## Class groups of the quadratic fields found by F. Diaz y Diaz

HTML articles powered by AMS MathViewer

- by Daniel Shanks PDF
- Math. Comp.
**30**(1976), 173-178 Request permission

Corrigendum: Math. Comp.

**30**(1976), 900.

Corrigendum: Math. Comp.

**30**(1976), 900.

## Abstract:

F. Diaz y Diaz has discovered 99 discriminants*d*between $- 3321607$ and $- 60638515$ inclusive for which $Q(\sqrt d )$ have a 3-rank ${r_3} = 3$. These 99 imaginary quadratic fields are analyzed here and the class groups are given and discussed for all those of special interest. In 98 cases, the associated real quadratic fields have ${r_3} = 2$, but for $d = 44806173 = 3 \cdot 14935391,Q(\sqrt d )$ has a class group $C(3) \times C(3) \times C(3)$; and this is now the smallest known

*d*for which a real quadratic field has ${r_3} = 3$.

## References

- Daniel Shanks and Peter Weinberger,
*A quadratic field of prime discriminant requiring three generators for its class group, and related theory*, Acta Arith.**21**(1972), 71–87. MR**309899**, DOI 10.4064/aa-21-1-71-87 - Daniel Shanks,
*New types of quadratic fields having three invariants divisible by $3$*, J. Number Theory**4**(1972), 537–556. MR**313220**, DOI 10.1016/0022-314X(72)90027-3 - Daniel Shanks and Richard Serafin,
*Quadratic fields with four invariants divisible by $3$*, Math. Comp.**27**(1973), 183–187. MR**330097**, DOI 10.1090/S0025-5718-1973-0330097-0 - Carol Neild and Daniel Shanks,
*On the $3$-rank of quadratic fields and the Euler product*, Math. Comp.**28**(1974), 279–291. MR**352042**, DOI 10.1090/S0025-5718-1974-0352042-5
F. DIAZ Y DIAZ, "Sur les corps quadratiques imaginaires dont le 3-rang du groupe des classes est supérieur à 1", - R. J. Porter,
*On irregular negative determinants of exponent $9_n$*, Math. Tables Aids Comput.**10**(1956), 22–25. MR**78057**, DOI 10.1090/S0025-5718-1956-0078057-1
R. J. PORTER, - T. Callahan,
*The $3$-class groups of non-Galois cubic fields. I, II*, Mathematika**21**(1974), 72–89; ibid. 21 (1974), 168–188. MR**366876**, DOI 10.1112/S0025579300005805 - T. Callahan,
*The $3$-class groups of non-Galois cubic fields. I, II*, Mathematika**21**(1974), 72–89; ibid. 21 (1974), 168–188. MR**366876**, DOI 10.1112/S0025579300005805
DANIEL SHANKS, "Review of Angell’s table," - Daniel Shanks,
*Calculation and applications of Epstein zeta functions*, Math. Comp.**29**(1975), 271–287. MR**409357**, DOI 10.1090/S0025-5718-1975-0409357-2 - David W. Boyd and H. Kisilevsky,
*On the exponent of the ideal class groups of complex quadratic fields*, Proc. Amer. Math. Soc.**31**(1972), 433–436. MR**289454**, DOI 10.1090/S0002-9939-1972-0289454-4 - P. J. Weinberger,
*Exponents of the class groups of complex quadratic fields*, Acta Arith.**22**(1973), 117–124. MR**313221**, DOI 10.4064/aa-22-2-117-124
A. SCHOLZ, "Über die Beziehung der Klassenzahlen quadratischer Körper zueinander,"

*Séminaire Delange-Pisot-Poitou*, 1973/74, no. G15.

*Tables in the UMT file, MTAC*, v. 7, 1953, p. 34; v. 8, 1954, pp. 96-97; v. 9, 1955, p. 26, p. 126, p. 198; v. 11, 1957, p. 275; v. 12, 1958, p. 225.

*Math. Comp.*, v. 29, 1975, pp. 661-665.

*Crelle’s J.*, v. 166, 1932, pp. 201-203.

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Math. Comp.
**30**(1976), 173-178 - MSC: Primary 12A25; Secondary 12A50
- DOI: https://doi.org/10.1090/S0025-5718-1976-0399039-9
- MathSciNet review: 0399039