## An error functional expansion for $N$-dimensional quadrature with an integrand function singular at a point

HTML articles powered by AMS MathViewer

- by J. N. Lyness PDF
- Math. Comp.
**30**(1976), 1-23 Request permission

## Abstract:

Let*If*be the integral of $f(\vec x)$ over an

*N*-dimensional hypercube and ${Q^{(m)}}f$ be the approximation to

*If*obtained by subdividing the hypercube into ${m^N}$ equal subhypercubes and applying the same quadrature rule

*Q*to each. In order to extrapolate efficiently for

*If*on the basis of several different approximations ${Q^{({m_i})}}f$, it is necessary to know the form of the error functional ${Q^{(m)}}f - If$ as an expansion in

*m*. When $f(\vec x)$ has a singularity, the conventional form (with inverse even powers of

*m*) is not usually valid. In this paper we derive the expansion in the case in which $f(\vec x)$ has the form \[ f(\vec x) = {r^\alpha }\varphi (\vec \theta )h(r)g(\vec x),\quad \alpha > - N,\] the only singularity being at the origin, a vertex of the unit hypercube of integration. Here $(r,\vec \theta )$ represents the hyperspherical coordinates of $(\vec x)$. It is shown that for this integrand the error function expansion includes only terms ${A_{\alpha + N + t}}/{m^{\alpha + N + t}},{B_t}/{m^t},{C_{\alpha + N + t}}\ln m/{m^{\alpha + N + t}},t = 1,2, \ldots$ . The coefficients depend only on the integrand function $f(\vec x)$ and the quadrature rule

*Q*. For several easily recognizable classes of integrand function and for most familiar quadrature rules some of these coefficients are zero. An analogous expansion for the error functional with integrand function $F(\vec x) = \ln rf(\vec x)$ is also derived.

## References

- Christopher T. H. Baker and Graham S. Hodgson,
*Asymptotic expansions for integration formulas in one or more dimensions*, SIAM J. Numer. Anal.**8**(1971), 473–480. MR**285115**, DOI 10.1137/0708043 - F. L. Bauer, H. Rutishauser, and E. Stiefel,
*New aspects in numerical quadrature*, Proc. Sympos. Appl. Math., Vol. XV, Amer. Math. Soc., Providence, R.I., 1963, pp. 199–218. MR**0174177** - J. S. R. Chisholm, A. Genz, and Glenys E. Rowlands,
*Accelerated convergence of sequences of quadrature approximations*, J. Comput. Phys.**10**(1972), 284–307. MR**326998**, DOI 10.1016/0021-9991(72)90067-8
M. E. A. EL TOM, Oral Contribution, Royal Irish Academy Conference on Numerical Analysis, Dublin, 1972.
A. C. GENZ, "An adaptive multi-dimensional quadrature procedure," - David K. Kahaner,
*Numerical quadrature by the $\varepsilon$-algorithm*, Math. Comp.**26**(1972), 689–693. MR**329210**, DOI 10.1090/S0025-5718-1972-0329210-X
J. N. LYNESS, "Symmetric integration rules for hypercubes. I, II, III," - J. N. Lyness,
*Computational techniques based on the Lanczos representation*, Math. Comp.**28**(1974), 81–123. MR**334458**, DOI 10.1090/S0025-5718-1974-0334458-6 - J. N. Lyness and B. W. Ninham,
*Numerical quadrature and asymptotic expansions*, Math. Comp.**21**(1967), 162–178. MR**225488**, DOI 10.1090/S0025-5718-1967-0225488-X - J. N. Lyness and B. J. J. McHugh,
*On the remainder term in the $N$-dimensional Euler Maclaurin expansion*, Numer. Math.**15**(1970), 333–344. MR**267734**, DOI 10.1007/BF02165125 - Israel Navot,
*An extension of the Euler-Maclaurin summation formula to functions with a branch singularity*, J. Math. and Phys.**40**(1961), 271–276. MR**140876**, DOI 10.1002/sapm1961401271 - Frank Stenger,
*Integration formulae based on the trapezoidal formula*, J. Inst. Math. Appl.**12**(1973), 103–114. MR**381261**, DOI 10.1093/imamat/12.1.103 - A. H. Stroud,
*Approximate calculation of multiple integrals*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0327006** - Hidetosi Takahasi and Masatake Mori,
*Quadrature formulas obtained by variable transformation*, Numer. Math.**21**(1973/74), 206–219. MR**331738**, DOI 10.1007/BF01436624

*Comp. Phys. Comm.*, v. 4, 1972, pp. 11-15. A. C. GENZ,

*Some Extrapolation Methods for the Numerical Calculation of Multi-Dimensional Integrals*, UKC Preprint No. AM/ACG/2, University of Kent at Canterbury, Kent, England.

*Math. Comp.*, v. 19, 1965, pp. 260-276, 394-407, 625-637. MR

**34**#952; #953; #954.

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Math. Comp.
**30**(1976), 1-23 - MSC: Primary 65D30
- DOI: https://doi.org/10.1090/S0025-5718-1976-0408211-0
- MathSciNet review: 0408211