An error functional expansion for $N$-dimensional quadrature with an integrand function singular at a point
HTML articles powered by AMS MathViewer
- by J. N. Lyness PDF
- Math. Comp. 30 (1976), 1-23 Request permission
Abstract:
Let If be the integral of $f(\vec x)$ over an N-dimensional hypercube and ${Q^{(m)}}f$ be the approximation to If obtained by subdividing the hypercube into ${m^N}$ equal subhypercubes and applying the same quadrature rule Q to each. In order to extrapolate efficiently for If on the basis of several different approximations ${Q^{({m_i})}}f$, it is necessary to know the form of the error functional ${Q^{(m)}}f - If$ as an expansion in m. When $f(\vec x)$ has a singularity, the conventional form (with inverse even powers of m) is not usually valid. In this paper we derive the expansion in the case in which $f(\vec x)$ has the form \[ f(\vec x) = {r^\alpha }\varphi (\vec \theta )h(r)g(\vec x),\quad \alpha > - N,\] the only singularity being at the origin, a vertex of the unit hypercube of integration. Here $(r,\vec \theta )$ represents the hyperspherical coordinates of $(\vec x)$. It is shown that for this integrand the error function expansion includes only terms ${A_{\alpha + N + t}}/{m^{\alpha + N + t}},{B_t}/{m^t},{C_{\alpha + N + t}}\ln m/{m^{\alpha + N + t}},t = 1,2, \ldots$ . The coefficients depend only on the integrand function $f(\vec x)$ and the quadrature rule Q. For several easily recognizable classes of integrand function and for most familiar quadrature rules some of these coefficients are zero. An analogous expansion for the error functional with integrand function $F(\vec x) = \ln rf(\vec x)$ is also derived.References
- Christopher T. H. Baker and Graham S. Hodgson, Asymptotic expansions for integration formulas in one or more dimensions, SIAM J. Numer. Anal. 8 (1971), 473–480. MR 285115, DOI 10.1137/0708043
- F. L. Bauer, H. Rutishauser, and E. Stiefel, New aspects in numerical quadrature, Proc. Sympos. Appl. Math., Vol. XV, Amer. Math. Soc., Providence, R.I., 1963, pp. 199–218. MR 0174177
- J. S. R. Chisholm, A. Genz, and Glenys E. Rowlands, Accelerated convergence of sequences of quadrature approximations, J. Comput. Phys. 10 (1972), 284–307. MR 326998, DOI 10.1016/0021-9991(72)90067-8 M. E. A. EL TOM, Oral Contribution, Royal Irish Academy Conference on Numerical Analysis, Dublin, 1972. A. C. GENZ, "An adaptive multi-dimensional quadrature procedure," Comp. Phys. Comm., v. 4, 1972, pp. 11-15. A. C. GENZ, Some Extrapolation Methods for the Numerical Calculation of Multi-Dimensional Integrals, UKC Preprint No. AM/ACG/2, University of Kent at Canterbury, Kent, England.
- David K. Kahaner, Numerical quadrature by the $\varepsilon$-algorithm, Math. Comp. 26 (1972), 689–693. MR 329210, DOI 10.1090/S0025-5718-1972-0329210-X J. N. LYNESS, "Symmetric integration rules for hypercubes. I, II, III," Math. Comp., v. 19, 1965, pp. 260-276, 394-407, 625-637. MR 34 #952; #953; #954.
- J. N. Lyness, Computational techniques based on the Lanczos representation, Math. Comp. 28 (1974), 81–123. MR 334458, DOI 10.1090/S0025-5718-1974-0334458-6
- J. N. Lyness and B. W. Ninham, Numerical quadrature and asymptotic expansions, Math. Comp. 21 (1967), 162–178. MR 225488, DOI 10.1090/S0025-5718-1967-0225488-X
- J. N. Lyness and B. J. J. McHugh, On the remainder term in the $N$-dimensional Euler Maclaurin expansion, Numer. Math. 15 (1970), 333–344. MR 267734, DOI 10.1007/BF02165125
- Israel Navot, An extension of the Euler-Maclaurin summation formula to functions with a branch singularity, J. Math. and Phys. 40 (1961), 271–276. MR 140876, DOI 10.1002/sapm1961401271
- Frank Stenger, Integration formulae based on the trapezoidal formula, J. Inst. Math. Appl. 12 (1973), 103–114. MR 381261, DOI 10.1093/imamat/12.1.103
- A. H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR 0327006
- Hidetosi Takahasi and Masatake Mori, Quadrature formulas obtained by variable transformation, Numer. Math. 21 (1973/74), 206–219. MR 331738, DOI 10.1007/BF01436624
Additional Information
- © Copyright 1976 American Mathematical Society
- Journal: Math. Comp. 30 (1976), 1-23
- MSC: Primary 65D30
- DOI: https://doi.org/10.1090/S0025-5718-1976-0408211-0
- MathSciNet review: 0408211