Maximal Binary Matrices and Sum of Two Squares

By C. H. Yang

Abstract. A maximal \((+1, -1)\)-matrix of order 66 is constructed by a method of matching two finite sequences. This method also produced many new designs for maximal \((+1, -1)\)-matrices of order 42 and new designs for a family of \(H\)-matrices of order \(26.2^n\). A nonexistence proof for a \((*)\)-type \(H\)-matrix of order 36, consequently for Golay complementary sequences of length 18, is also given.

Let \(M\) be a \(2n \times 2n\) \((+1, -1)\)-matrix, then the absolute value of \(\det M\) is equal to or less than \(\mu_{2n}\), where \(\mu_{2n} = (2n)^n\), if \(n\) is even; and \(\mu_{2n} = 2^n(2n - 1)(n - 1)^{n-1}\), if \(n\) is odd (see [1], [2] and their references).

When \(n\) is even and the absolute value of \(\det M\) is equal to \(\mu_{2n}\), then the matrix \(M\) is called a nontrivial Hadamard matrix or \(H\)-matrix. Another characterization of an \(H\)-matrix \(M\) of order \(m\) is that it satisfies \(MM^T = ml_m\), where \(l_m\) is the \(m \times m\) identity matrix, \(T\) indicates the transposed matrix. (\(m\) must be equal to 1, 2, or \(4n\).)

A sufficient condition for \((+1, -1)\)-matrix \(M\) of order \(2n\) being maximal is that the following condition holds:

\[
\begin{bmatrix}
\begin{bmatrix} P_n \\
0 \\
0
\end{bmatrix}
\end{bmatrix}
= 0,
\]

where \(P_n = 2nl_n\), when \(n\) is even (i.e. when \(M\) is an \(H\)-matrix); and \(P_n = (2n - 2)J_n + 2J_n\), when \(n\) is odd, \(J_n\) is the \(n \times n\) matrix whose every entry is 1.

When \(n\) is odd, such maximal \((+1, -1)\)-matrices \(M_{2n}\) satisfying the condition (1) have been known for \(1 < n < 31\), except \(n = 11, 17, 29\) (see [1], [2], and [4]). Such maximal matrices \(M_{2n}\) can be constructed by the following standard form:

\[
M_{2n} = \begin{bmatrix} A & B \\
-B^T & A^T
\end{bmatrix},
\]

where \(A\) and \(B\) are \(n \times n\) circulant matrices with entries 1 or \(-1\).

For maximal matrices \(M_{2n}\) of type \((*)\), the condition (1) is equivalent to

\[
AA^T + BB^T = P_n.
\]

Let \((a_k)\) and \((b_k)\), \(0 < k < n - 1\), be, respectively, the first row entries of matrices \(A\) and \(B\), then the condition (2) is also equivalent to each of the following conditions (3) and (4) (see [4], [5]).
(3) \[|A(w)|^2 + |B(w)|^2 = P_n(w), \]
where \(A(w) = \sum_{k=0}^{n-1} a_k w^k\), \(B(w) = \sum_{k=0}^{n-1} b_k w^k\), \(w\) is any \(n\)th root of unity; and \(a_k, b_k\) are either 1 or -1. \(P_n(w) = 2n\), for even \(n\); and \(P_n(w) = 2(n + \sum_{k=1}^{n-1} w^k)\), for odd \(n\).

(4) \[|C(s)|^2 + |D(s)|^2 = \lfloor n/2 \rfloor, \]
where \(C(s) = \sum_{k=0}^{n-1} c_k s^k\), \(D(s) = \sum_{k=0}^{n-1} d_k s^k\), \(s\) is any nontrivial \(n\)th root of unity (i.e. \(s \neq 1\)), \(c_k = 1\) whenever \(a_k = 1\), and \(c_k = 0\) whenever \(a_k = -1\), \(d_k\) is similarly defined by \(b_k\), and \([r]\) means the integral part of \(r\).

Let \(|C(s)|^2 = \sum_{k=0}^{n-1} p_k s^k\), \(|D(s)|^2 = \sum_{k=0}^{n-1} q_k s^k\). Then

(5) \[|C(s)|^2 + |D(s)|^2 = \sum_{k=0}^{n-1} (p_k + q_k) s^k. \]
Consequently, the right-hand side of (5) is equal to \([n/2]\), if \(p_k + q_k = r_n\), for each \(k\), \(1 \leq k \leq \lfloor n/2 \rfloor\), where \(r_n = (p^2 + q^2 - p - q)/(n - 1)\), \(p = p_0\) and \(q = q_0\) are, respectively, the number of +1's in each row of matrices \(A\) and \(B\).

The following maximal matrices \(M_{2n}\) with the corresponding \(C(s)\) and \(D(s)\) have been obtained for \(n = 21, 33, \) and \(26\), by matching two finite sequences \((p_k)\) and \((q_k)\) such that \(p_k + q_k = r_n\), for each \(k\), \(1 \leq k \leq \lfloor n/2 \rfloor\). Let \(C(s) = \sum_k s^k, k \in C,\) and \(D(s) = \sum_k s^k, k \in D;\) \(s^n = 1,\) where \(s\) is a nontrivial \(n\)th root of unity. Then we have the following \(C\) and \(D\) in Table I for \(n = 21\).

<table>
<thead>
<tr>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1, 3, 6, 8, 12</td>
<td>0, 1, 2, 3, 4, 8, 11, 12, 16</td>
</tr>
<tr>
<td>0, 1, 2, 4, 11, 17</td>
<td>0, 1, 2, 3, 6, 8, 10, 11, 15, 18</td>
</tr>
<tr>
<td>0, 1, 4, 10, 15, 17</td>
<td>0, 1, 2, 3, 4, 5, 9, 11, 14, 17</td>
</tr>
<tr>
<td>0, 1, 5, 10, 13, 15</td>
<td>0, 1, 2, 3, 4, 5, 8, 11, 15, 17</td>
</tr>
<tr>
<td>0, 1, 4, 8, 14, 16</td>
<td>0, 1, 2, 3, 4, 6, 7, 10, 14, 16</td>
</tr>
<tr>
<td>0, 1, 3, 7, 10, 15</td>
<td>0, 1, 2, 3, 4, 6, 8, 11, 12, 16</td>
</tr>
<tr>
<td>0, 1, 4, 7, 14, 16</td>
<td></td>
</tr>
<tr>
<td>0, 1, 4, 8, 14, 16</td>
<td>0, 1, 2, 3, 4, 6, 7, 11, 13, 16</td>
</tr>
<tr>
<td>0, 1, 4, 8, 10, 16</td>
<td>0, 1, 2, 3, 4, 6, 7, 11, 14, 16</td>
</tr>
</tbody>
</table>

For example, \((+1, -1)\) matrices \(A\), corresponding to \(C(s)\) with \(C = \{0, 1, 3, 6, 8, 12\}\), can be obtained for \(s = w^k, w = \exp(2\pi i/21)\), if \(k\) is relatively prime to 21. These matrices \(A\) are listed in Table II, where + stands for +1 and - for -1.
Table II

<table>
<thead>
<tr>
<th>k</th>
<th>First row of (+1, -1)-matrix A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>++-- -++- ++-- ------</td>
</tr>
<tr>
<td>2</td>
<td>++-- +--+- +--+- ------</td>
</tr>
<tr>
<td>4</td>
<td>++-- +--+- +--+- ------</td>
</tr>
<tr>
<td>5</td>
<td>+--+- +--+- +--+- ------</td>
</tr>
<tr>
<td>8</td>
<td>++-- -++- ------ ------</td>
</tr>
</tbody>
</table>

For \(n = 33 \), we have \(C = \{0, 1, 2, 3, 7, 8, 11, 13, 15, 18, 27, 30\} \) and \(D = \{0, 1, 2, 3, 5, 8, 12, 15, 16, 17, 21, 25, 27\} \).

When \(n \) is even, \(M_{2n} \) is an \(H \)-matrix and for \(n = 26 \), we have \(C = \{0, 1, 2, 3, 4, 5, 9, 12, 16, 18, 22\} \) and \(D = \{0, 1, 2, 3, 5, 8, 12, 15, 16, 17, 21, 25, 27\} \). By applying Theorem 1 of [5] once, we obtain \((\ast)\)-type \(H \)-matrices of order 104, i.e. for \(n = 52 \), we have \(C = \{0, 1, 2, 3, 4, 5, 7, 9, 10, 14, 16, 22, 25, 33, 37, 38, 42, 45\} \) and \(D = \{0, 2, 4, 10, 13, 14, 15, 16, 17, 21, 22, 23, 27, 29, 31, 32, 35, 38, 39, 41, 42, 43, 47, 49, 51\} \); or \(C = \{0, 1, 2, 4, 9, 10, 14, 16, 17, 21, 22, 29, 32, 35, 38, 42, 43, 45, 47, 49, 51\} \) and \(D = \{0, 2, 3, 4, 5, 7, 10, 11, 13, 14, 15, 16, 19, 22, 23, 25, 27, 31, 32, 33, 37, 38, 39, 41, 42\} \). By applying the above theorem \(n \) times, we obtain \((\ast)\)-type \(H \)-matrices of order 52.2\(^n\).

Other \((\ast)\)-type \(H \)-matrices \(M_{52} \) with the corresponding \(C \) and \(D \) are found as follows:

- \(C = \{0, 1, 2, 3, 4, 7, 10, 15, 17, 21\} \), \(D = \{0, 1, 2, 4, 6, 7, 10, 11, 15, 18, 20\} \); or
- \(C = \{0, 1, 2, 3, 4, 7, 9, 12, 16, 20\} \), \(D = \{0, 1, 2, 4, 6, 12, 13, 17, 18, 20, 23\} \); or
- \(C = \{0, 1, 2, 3, 5, 8, 12, 13, 16, 22\} \), \(D = \{0, 1, 3, 4, 6, 8, 10, 12, 13, 18, 19\} \).

A complex \(H \)-matrix of order \(n \) is an \(n \times n \) matrix \(\gamma \) whose entries are \(\pm 1 \) or \(\pm i \) such that \(\gamma \overline{\gamma}^T = nI_n \), where \(\overline{\gamma} \) is the complex conjugate of \(\gamma \). It should be noted that existence of a \((\ast)\)-type \(H \)-matrix of order \(2n \) with symmetric circulant \(n \times n \) submatrices \(A \) and \(B \) implies existence of a complex symmetric circulant \(n \times n \) \(H \)-matrix \(\gamma = \alpha + i\beta \), where \(\alpha = (A + B)/2 \) and \(\beta = (A - B)/2 \). Consequently, no \((\ast)\)-type \(H \)-matrices of order \(2n \) with symmetric submatrices \(A \) and \(B \) exist when \(n = 2p^m \) or \(n = 2k \) for \(k > 4 \), where \(p \) is an odd prime; \(m \) and \(k \) positive integers (see Theorem 1 of [3]).

Also we have

Theorem. No \((\ast)\)-type \(H \)-matrix of order 36 exists regardless of symmetry in submatrices \(A \) and \(B \).

Suppose on the contrary such a \((\ast)\)-type \(H \)-matrix exists. Let \(C(s) = C_0(s^2) + sC_1(s^2) \) and \(D(s) = D_0(s^2) + sD_1(s^2) \) be the corresponding polynomials of the \(H \)-matrix.
satisfying the condition (4). Then \(-s\) is also an 18th root of unity and \(C(-s) = C_0(s^2) - sC_1(s^2)\) and \(D(-s) = D_0(s^2) - sD_1(s^2)\).

Since \(|B(s)|^2 = B(s)B(s^{-1})\) and \(|B(-s)|^2 = B(-s)B(-s^{-1})\) for \(B(s) = C(s)\) or \(D(s)\), we have for \(s \neq \pm 1\),

\[
18 = |C(s)|^2 + |D(s)|^2 + |C(-s)|^2 + |D(-s)|^2
= 2(|C_0(t)|^2 + |C_1(t)|^2 + |D_0(t)|^2 + |D_1(t)|^2),
\]

where \(t = s^2\), a nontrivial 9th root of unity. Consequently, we have

\[
|C_0(t)|^2 + |C_1(t)|^2 + |D_0(t)|^2 + |D_1(t)|^2 = 9.
\]

By setting \(s = -1\) in (4), we have

\[
(-1)^2 + D(-1)^2 = 9.
\]

Since \(C(-1) = C_0(1) - C_1(1)\) and \(D(-1) = D_0(1) - D_1(1)\) are integers, without loss of generality, we can assume that \((-1)^2 = 0\) and \((-1)^2 = 9\), from the condition (7). Consequently, \(C_0(t)\) and \(C_1(t)\) must each have three nonvanishing terms in \(t\), and one of \(D_k(t)\) must have three terms in \(t\) and the other \(D_j(t)\) six terms, where \(k = 0\) or \(1\), \(j \neq k\). And \(D_j(t) = -D_j(t) = \sum_{0}^{s} r^k - D_j(t)\) must have three terms in \(t\).

When \(t = w^k\), \(w = \exp(2\pi i/3)\), \(k = 1\) or \(2\): \(|B_k(w)|\), where \(B = C\) or \(D\), \(k = 1\) or \(0\), can only take the value \(0, \sqrt{3}, \) or \(3\). This is because \(B_k(w)\) is of the form: \(1 + w + w^2\), or \(\pm (2 + w^m)w^m\), where \(n, m = 0, 1, 2\) and only \(D_j(w) = -D_j(w)\) has \(-\) sign.

There are only two possibilities for \(|B_k(w)|\)'s to satisfy the condition (6): Case 1, three of them must be equal to \(\sqrt{3}\) and the other one \(0\); or Case 2, one of them must be \(3\) and the other three \(0\).

For Case 1, without loss of generality, let \(|C_k(w)| = 0\), then \(|C(w)| = |C_j(w^2)| = |D_h(w)| = \sqrt{3}\), where \(k = 0\) or \(1\); \(j \neq k\); and \(h = 0\) or \(1\). Also,

\[
|D(w)| = |D_0(w^2) + wD_1(w^2)|
= |\mp (2 + w^{2k})w^{2h} \pm (2 + w^{2m})w^{2n}| = |2 + w^{2k} - (2 + w^{2m})w^{2q+1}|,
\]

where \(k, m = 1\) or \(2; h, n = 0, 1, \) or \(2\); and \(q = n - h\), can only take the value \(0, \sqrt{3}\), or \(3\). This is because \(2 + w^{2k} - (2 + w^{2m})w^{2q+1}\) can be reduced to \(0\) or \(\pm (2 + w^n)w^m\), where \(n, m = 0, 1, \) or \(2\). Consequently, the condition (4) cannot be satisfied. When \(|D_h(w)| = 0\), \(|D(w)| = |D_m(w^2)| = |C_n(w)| = \sqrt{3}\), where \(h = 0\) or \(1\); \(h \neq m\); and \(m, n = 0\) or \(1\). Also, \(|C(w)| = |C_0(w^2) + wC_1(w^2)| = |2 + w^{2k} + (2 + w^{2m})w^{2q+1}|\) can only take the value \(0, \sqrt{3}\) or \(3\). Therefore, the condition (4) cannot be satisfied.

For Case 2, without loss of generality, let \(|C_k(w)| = 3\) then \(|C_j(w)| = |D_h(w)| = 0\), where \(k = 0\) or \(1\); \(j \neq k\); and \(j, h = 0\) or \(1\). Consequently, for \(t \neq w^r\) (\(r = 0, 1, \) or \(2\)) \(C_k(t)\) must be of the form \(t^m(1 + t^3 + t^6)\) and the other three of the form \(\pm t^m u(t^2)\), where \(u(t) = 1 + t + t^2, q \equiv 3 \pmod{9}\).

For nonnegative integers \(a, b, c\), such that \(a + b + c = 3\),

*Excluding the case \(|D(w)| > 3\).
\[a|u(t)|^2 + b|u(t^2)|^2 + c|u(t^4)|^2 \]

\[= 3(a + b + c) + (2a + c)t_1 + (2b + a)t_2 + (2c + b)t_4, \]

where \(t_k = t^k + t^{-k} \), the condition (8) holds for any \(t \), a 9th root of unity which is not a 3rd root of unity. From now on let \(t \) be such a 9th root of unity, i.e. \(t \neq w^k \).

Since there are only three distinct \(|u(t^r)|'s \) for \(r \not\equiv 3 \pmod{9} \), i.e. \(|u(t)|, |u(t^2)|, \) and \(|u(t^4)| \), from the conditions (6) and (8), one of \(|C(t)| \) and \(|D(t)| \) must be equal to \(|u(t)| \) and the other two \(|u(t^2)| \) and \(|u(t^4)| \). Let \(|C(t)| = |u(t)|; \) then \(|C(t)| = |C(t^2)| = |u(t^2)| \) and \(|D(t)| = |D_0(t^2) + tD_1(t^2)| = |u(t^2n) - t^ku(t^{2m})| \), where \(n \neq m; n, m = \pm 2 \) or \(\pm 4; k \) an integer \(\pmod{9} \). Consequently, we have

\[|C(t)|^2 + |D(t)|^2 = 9 - P(n, m, k; t), \]

where

\[P(n, m, k; t) = t^k u(t^{2m})u(t^{-2n}) + t^{-k} u(t^{2m})u(t^{-2n}) \]

\[= \sum_{\alpha} t_{\alpha}, \quad \alpha \in \{ k, -2n, k - 4n, k + 2, k + 4m, k + 2(n - m), \}
\]

\[k + 4(m - n), k + 2m - 4n, k + 4m - 2n \} \]

By using identities \(P(n, m, k; t) = P(m, n, -k; t) = P(-m, -n, k; t) = P(-n, -m, -k; t) \) and performing computations and simplifications, \(P(n, m, k; t) \) is found to take the value \(t_2 - t_4, t_4 - t_1, 3 + t_1 - t_2, -3 + t_2 - t_4, \) or \(2(t_4 - t_2) \) for \(n \neq m; n, m = \pm 2 \) or \(\pm 4; 0 \leq k \leq 8 \). Thus, the condition (4) cannot be satisfied since \(P(n, m, k; t) \neq 0 \) for \(t \), any primitive 9th root of unity. Similarly, when \(|D_n(w)| = 3 \), we obtain \(|C(t)|^2 + |D(t)|^2 = 9 + P(n, m, k; t) \). Consequently, the condition (4) cannot be satisfied; and hence, no such (\#)-type \(H \)-matrix of order 36 exists.

Since existence of Golay complementary sequences \((a_k), (b_k), 0 \leq k \leq n - 1, \) of length \(n \) (see [6]) implies existence of a (\#)-type \(H \)-matrix of order 2n with the corresponding \(A(w) = \sum a_kw^k \) and \(B(w) = \sum b_kw^k \) satisfying the condition (3), nonexistence of Golay complementary sequences of length 18 is derived from nonexistence of a (\#)-type \(H \)-matrix of order 36.

Acknowledgment. I wish to thank the referee for comments and recommendations concerning nonexistence proof of a (\#)-type \(H \)-matrix of order 36 and references to Golay complementary sequences.

Department of Mathematics
SUNY, College at Oneonta
Oneonta, New York 13820

