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Factorization Tables for Trinomials Over GF(q)

By Jacob T. B. Beard, Jr.* and Karen I. West

Abstract.   Tables placed in the UMT file give the complete factorization over

GF(q), q = pa, of each trinomial T(x) of degree n,   2 < n < d, as below, together

with the generalized Euler ^-function whenever T(x) is not prime and <t>(T(x)) <
a

10 .   In addition, the numerical exponent and (/-polynomial is given for each

T(x) whenever 2 < n < d,.

q = 2: d = 20, dj = 18, q = 5: d = 15, d, = 8,

q = 22: d = 16, d, = 10, q = 1: d= 10, dx = 7,

q = 23: d = 9,dx= 1, q= 11: d = l,

q = 24: d = 8, <? = 13: d = 7,

q = 3: d = 18, dx = 9, q = 11: d = 7,

q = 32: d = 9, (7 = 19: d = 7.

On a microfiche card with this note, selected results from the above appear as

Table I-Table IV as follows:

<7 = 2: d  = 20, d, = 18,        q = 3: d - II, rfj = 9,

<7 = 22: d = 8, d, = 8, qr = 5: d = 5, d, = 5.

As evidenced by these tables, there does not necessarily exist a prime trinomial

of given degree n over arbitrary GF(c7).

1.   Introduction and Notation.  The tables, both those placed in the UMT file

and Table I—Table IV to be found on a microfiche card at the back of this issue,

give the complete factorizations of all trinomials T(x) over GF(<7) as indicated in the

abstract, where T(x) is monic and x / T(x).  The generalized Euler 4>-function is

given whenever Tix) is not prime and 4>(r(x)) < 108, and in some instances the

numerical exponent and ¿/-polynomial belonging to Tix) axe given.  Although the

¿/-polynomial belonging to gix) (Ore [7] ) is well defined for arbitrary gix) £ GF[q, x],

"the numerical exponent" of nonprime gix) E GF[q, x] is root dependent.  The

reader is cautioned that "the numerical exponent" assigned to a nonprime polynomial

Tix) in these tables is the multiplicative order of the companion matrix of Tix).

The tables complement those of Zierler and Brillhart [8] and were obtained on a

Xerox 27 using a software package developed by the authors.   Readers interested in

efficient algorithms for factoring in GF[q, x] should see [5] and [6].

Our terminology is that of [1 ].  Briefly, for monic polynomials fix) G GF[</, x],

the Euler 4>-function gives the number <t»(/(jc)) of monic polynomials gix) 6 GF[c/, x]
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of degree <deg/(jc) such that (g(x),f(x)) = 1.   A prime (monic irreducible) poly-

nomial fix) £ GF[<7, x] of degree m is called primitive of the first, second, or third

kind as any root of fix) in GF(c7m) respectively belongs to the numerical exponent

qm - 1, the ¿/-polynomial xim - x, or both.

2.   Description.  Our representation for GF(pa), a > 1, is discussed in [1], while

GF(p) is represented as usual by the integers modulo p.   For a > 1, the additive

identity of GF(p") is denoted by Z, and each a G GF(p")* = {0, 1, . . . , pa - 2} is

an exponent of a cyclic generator for GFijf)*.  The defining polynomial F(x) of

GF(pa), a > 1, is given in each appropriate table heading and remains the same as

in [2] -[4].   Whenever numerical exponents and q-polynomials are given, each

prime polynomial in the table is flagged by the conventions

#: prime but not primitive of the first or second kind;

primitive of the first kind but not primitive of the second kind;

primitive of the second kind but not primitive of the first kind;

primitive of the third kind, i.e., both first and second kind.

Each polynomial is written with the variable factor of each term suppressed and in

increasing order by degree whenever nonlinear.   Linear factors are given in the form

x - a, displaying the root.  Hence, the factorization

T(x) = (x - a0)(b0 + bxx + x2)icQ + c{x + c2x2 + x3)

is denoted by

Tix) = (1 - a0)ibQ +bx + \)icQ +cx+c2 + 1).

The ¿/-polynomial

m — 1 m

gix) = d0+dxx« + ...+dm_xx<> +x«

of Tix) is then written

gix) = d0+dl+...+dm_x+l.

For deg Tix) = n and Tix) belonging to xi"  - x, this maximal ¿/-polynomial is

always omitted.

3.   Distribution of Primes and Primitives.  Table A is based on the "complete"

set of tables as placed in the UMT file, and for each q, n gives the number of prime

trinomials and primitive trinomials of the first, second, or third kind of degree n over

GF(<7).  An entry of "—" displays the number is not known.  However, additional

information is available in such a case:   consider the subtable

n       Pr       1st      2nd      3rd

12 4

13 12
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Whenever the number of primitive trinomials of the first kind is not given, the programs

do not calculate any information toward deciding whether the trinomials of that de-

gree or larger are primitive of any kind.  We have "completed" the last two columns

by inspection, using the fact observed earlier [1] that if x" + axk + ß is primitive of

the second kind, then k = n - 1.  Hence for q = 3, we conclude from the table that

the sum of the roots of each prime trinomial of degree 12 is zero, but that there is at

least one prime trinomial of degree 13 whose root sum is nonzero.   For given n, q we

observe there does not necessarily exist a prime trinomial of degree n over GFiq),

much less one which is primitive of the first kind.   Since the companion matrix of a

primitive trinomial is sparse, such primitives are of interest in various contexts [1],

[5].  It is hoped that empirical use of these tables will lead to existence characteriza-

tions and related results.

Table A

Distribution of Primitive Trinomials

Q n Pr 1st        2nd       3rd n Pr       1st 2nd       3rd

2             2 1            1            1            1 12 4         0           0           0

3 2211 13 0000

4 2211 14 2000

5 2200 15 6611

6 3211 16 0000

7 4411 17 6600

8 0000 18 5200

9 4210 19 0000

10 2 2 0 0 20 4 2f 0 0

11 2 2 0 0

222 6464 10 6000

3 6 0           3           0 11 18,-          -          -

4 0000 12 0000

5 18 8           6           4 13 12                       0           0

6 4000 14 0000

7 12 0           3           0 15 30         -

8 0000 16 0000

9 12 0           3           0

23    2 28 18   28   18    6 63 36 21    18

3 42 36 21    18    7 28 0 7    0

4 56 36 28   18    8 0 0 0    0

5 14 0009 84 0 00

t   Determined by Zierler and Brillhart [8].
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Table A icontinued)

Pr 1st        2nd        3rd n        Pr 1st        2nd        3rd

24           2 120                                     -           6         80           -           0           0

3 150 -          -          -          7       300

4 000080000

5 210

3            2 2222         11 8-00

3 4221 12 4-00

4 7522 13 12---

5 862 114 6---

6 12 800         15 8-00

7 12 10           0           0         16 14           -   '      0           0

8 17 11           0          0         17 4

9 4200         18 6-00

10 2-00

32        2 32          -          -          -          6 24          -          0          0

3 48 7 80

4 48 ---8 48          -00

5 80 ---9 48           -00

52 84849 8-00

3 16 884         10 8-00

4 12 0           0           011 40

5 16 8            4            2          12 36                         -

6 24 844          13 8-00

7 24 24           8           8         14 12           -           0           0

84400 15 16                        00

7    2 18    8   18    8    7 36   12    6    2

3 24 6   12    3    8 48

4 36 0   12    0    9 48

5 36 12   12    4   10 30    -    -    -

6 24 0    0    0

11   2 50    -    -         5 60

3 80 -    -    -    6 120         -    -

4 90 7 120

13   2 72    -    -    -    5 120         -

3 96 ---6 144---

4 108 -    -         7 144
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Table A icontinued)

q n Pr 1st        2nd        3rd n Pr 1st        2nd       3rd

17        2 128 - - - 5 224

3 192 - - 6 320

4 192 - - 7 224

19        2 162 - - 5 288

3 216 6 324

4 270 7 324
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