Some fourth degree integration formulas for simplexes
HTML articles powered by AMS MathViewer
- by A. H. Stroud PDF
- Math. Comp. 30 (1976), 291-294 Request permission
Abstract:
A fourth degree integration formula is given for the n-dimensional simplex for $n = 3,4,5,6,7,8,10,11,12$. The formula contains $({n^2} + 3n + 4)/2$ points.References
-
T. M. BYKOVA, "Cubature formulas for computing triple integrals which are exact for fourth degree polynomials and have eleven nodes," Vesci Akad. Navuk BSSR Ser Fīz.-Mat. Navuk, no. 1, v. 1970, pp. 51-54. (Russian)
- R. Lauffer, Interpolation mehrfacher Integrale, Arch. Math. 6 (1955), 159–164 (German). MR 68307, DOI 10.1007/BF01900222
- J. N. Lyness and D. Jespersen, Moderate degree symmetric quadrature rules for the triangle, J. Inst. Math. Appl. 15 (1975), 19–32. MR 378368
- A. H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR 0327006
Additional Information
- © Copyright 1976 American Mathematical Society
- Journal: Math. Comp. 30 (1976), 291-294
- MSC: Primary 65D30
- DOI: https://doi.org/10.1090/S0025-5718-1976-0391484-0
- MathSciNet review: 0391484