# Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

## A uniform distribution question related to numerical analysisHTML articles powered by AMS MathViewer

by Harald Niederreiter and Charles F. Osgood
Math. Comp. 30 (1976), 366-370 Request permission

## Abstract:

Using the theory of uniform distribution modulo one, it is shown that under certain conditions on the real-valued functions $\alpha (x)$ and $g(x)$ on [0,1 ], $h\;\sum \limits _{\gamma = 1}^{[{h^{ - 1}}]} {{{\{ {h^{ - 1}}\alpha (\gamma h)\} }^m}g(\gamma h) = {{(m + 1)}^{ - 1}}\int _0^1 {g(x)\;dx + o\left ( {{h^{1/3}}\log \frac {1}{h}} \right )} \quad {\text {as}}\;h \to 0 + ,}$ where $m > 0$ and x denotes the fractional part of x. The conditions are as follows: $\alpha ”(x)$ exists for all but finitely many points in [0, 1], changes sign at most finitely often, and is bounded away in absolute value from both 0 and $\infty$, whereas $g(x)$ is of bounded variation on [0,1]. Also, under these conditions on $\alpha (x)$, $h\;\sum \limits _{\gamma = 1}^{[{h^{ - 1}}]} {{{\{ {h^{ - 1}}\alpha (\gamma h)\} }^m} = {{(m + 1)}^{ - 1}} + o({h^{1/3}})\quad {\text {as}}\;h \to 0 + .}$ These results, which are, in fact, deduced from somewhat more general propositions, answer questions of Feldstein connected with discretization methods for differential equations.
Similar Articles
• Retrieve articles in Mathematics of Computation with MSC: 65D30, 10K05
• Retrieve articles in all journals with MSC: 65D30, 10K05