Higher order approximations to the boundary conditions for the finite element method
HTML articles powered by AMS MathViewer
- by J. J. Blair PDF
- Math. Comp. 30 (1976), 250-262 Request permission
Abstract:
We consider here the approximation of essential boundary conditions for the finite element solutions of second order elliptic equations in two dimensions. Nonhomogeneous boundary conditions on curved boundaries are treated. The approach is to use trial functions which interpolate (in a generalized sense) functions satisfying the boundary conditions. The work is directed to showing in what manner this interpolation should be done to achieve the maximum accuracy and computational simplicity. These methods can be used to construct approximations of arbitrary high order of accuracy. Several examples are given.References
- Shmuel Agmon, Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. MR 0178246
- Alan E. Berger, $L^{2}$ error estimates for finite elements with interpolated boundary conditions, Numer. Math. 21 (1973/74), 345–349. MR 343655, DOI 10.1007/BF01436388
- Alan Berger, Ridgway Scott, and Gilbert Strang, Approximate boundary conditions in the finite element method, Symposia Mathematica, Vol. X (Convegno di Analisi Numerica, INDAM, Rome, 1972) Academic Press, London, 1972, pp. 295–313. MR 0403258
- J. J. Blair, Bounds for the change in the solutions of second order elliptic PDE’s when the boundary is perturbed, SIAM J. Appl. Math. 24 (1973), 277–285. MR 317557, DOI 10.1137/0124029 J. BLAIR, "Error bounds for spline approximation." (Unpublished manuscript.)
- James H. Bramble and Joachim A. Nitsche, A generalized Ritz-least-squares method for Dirichlet problems, SIAM J. Numer. Anal. 10 (1973), 81–93. MR 314284, DOI 10.1137/0710010
- James H. Bramble, Todd Dupont, and Vidar Thomée, Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections, Math. Comp. 26 (1972), 869–879. MR 343657, DOI 10.1090/S0025-5718-1972-0343657-7
- James H. Bramble and Alfred H. Schatz, Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions, Comm. Pure Appl. Math. 23 (1970), 653–675. MR 267788, DOI 10.1002/cpa.3160230408
- J. H. Bramble and A. H. Schatz, Least squares methods for $2m$th order elliptic boundary-value problems, Math. Comp. 25 (1971), 1–32. MR 295591, DOI 10.1090/S0025-5718-1971-0295591-8
- James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809–820. MR 282540, DOI 10.1090/S0025-5718-1970-0282540-0
- R. E. Carlson and C. A. Hall, Ritz approximations to two-dimensional boundary value problems, Numer. Math. 18 (1971/72), 171–181. MR 305621, DOI 10.1007/BF01436326
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 0247243
- J.-L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5–68 (French). MR 165343
- Gilbert Strang, Approximation in the finite element method, Numer. Math. 19 (1972), 81–98. MR 305547, DOI 10.1007/BF01395933
- Gilbert Strang and Alan E. Berger, The change in solution due to change in domain, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 199–205. MR 0337023
- Miloš Zlámal, On the finite element method, Numer. Math. 12 (1968), 394–409. MR 243753, DOI 10.1007/BF02161362
- Miloš Zlámal, A finite element procedure of the second order of accuracy, Numer. Math. 14 (1969/70), 394–402. MR 256577, DOI 10.1007/BF02165594
Additional Information
- © Copyright 1976 American Mathematical Society
- Journal: Math. Comp. 30 (1976), 250-262
- MSC: Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1976-0398123-3
- MathSciNet review: 0398123