Finite-difference approximations to singular Sturm-Liouville eigenvalue problems
HTML articles powered by AMS MathViewer
- by G. W. Reddien PDF
- Math. Comp. 30 (1976), 278-282 Request permission
Abstract:
A modification of the central-difference method is given which greatly improves the convergence when applied to a certain class of singular eigenvalue problems, including the Klein-Gordon equation. The singularity given special treatment is at the finite end.References
- J. W. Cooley, An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields, Math. Comp. 15 (1961), 363–374. MR 129566, DOI 10.1090/S0025-5718-1961-0129566-X
- Herbert L. Dershem, Approximation of the Bessel eigenvalue problem by finite differences, SIAM J. Numer. Anal. 8 (1971), 706–716. MR 297141, DOI 10.1137/0708064
- William M. Frank, David J. Land, and Richard M. Spector, Singular potentials, Rev. Modern Phys. 43 (1971), no. 1, 36–98. MR 0449255, DOI 10.1103/RevModPhys.43.36
- Herbert B. Keller, Numerical methods for two-point boundary-value problems, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1968. MR 0230476
Additional Information
- © Copyright 1976 American Mathematical Society
- Journal: Math. Comp. 30 (1976), 278-282
- MSC: Primary 65L15
- DOI: https://doi.org/10.1090/S0025-5718-1976-0403235-1
- MathSciNet review: 0403235