## Reviews and Descriptions of Tables and Books

HTML articles powered by AMS MathViewer

- by PDF
- Math. Comp.
**30**(1976), 371-380 Request permission

Corrigendum: Math. Comp.

**31**(1977), 617.

## References

- Helmut Hasse,
*Über die Klassenzahl abelscher Zahlkörper*, Akademie-Verlag, Berlin, 1952 (German). MR**0049239**
E. KUMMER, "Über die Klassenzahl der aus - Tauno Metsänkylä,
*Calculation of the first factor of the class number of the cyclotomic field*, Math. Comp.**23**(1969), 533–537. MR**247738**, DOI 10.1090/S0025-5718-1969-0247738-8
R. SPIRA, "Calculation of the first factor of the cyclotomic class number," - Morris Newman,
*A table of the first factor for prime cyclotomic fields*, Math. Comp.**24**(1970), 215–219. MR**257029**, DOI 10.1090/S0025-5718-1970-0257029-5
MURRAY BERG, "Phi, the golden ratio (to 4599 decimal places) and Fibonacci numbers," - Pierre Barrucand, H. C. Williams, and L. Baniuk,
*A computational technique for determining the class number of a pure cubic field*, Math. Comp.**30**(1976), no. 134, 312–323. MR**392913**, DOI 10.1090/S0025-5718-1976-0392913-9 - Yoshihiko Yamamoto,
*On unramified Galois extensions of quadratic number fields*, Osaka Math. J.**7**(1970), 57–76. MR**266898** - P. J. Weinberger,
*Real quadratic fields with class numbers divisible by $n$*, J. Number Theory**5**(1973), 237–241. MR**335471**, DOI 10.1016/0022-314X(73)90049-8 - Daniel Shanks,
*Systematic examination of Littlewood’s bounds on $L(1,\,\chi )$*, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 267–283. MR**0337827** - Daniel Shanks,
*The simplest cubic fields*, Math. Comp.**28**(1974), 1137–1152. MR**352049**, DOI 10.1090/S0025-5718-1974-0352049-8
J. E. LITTLEWOOD, "On the class-number of the corpus $P(\sqrt { - k} )$", - Paul Lévy,
*Sur le développement en fraction continue d’un nombre choisi au hasard*, Compositio Math.**3**(1936), 286–303 (French). MR**1556945** - Daniel Shanks,
*Calculation and applications of Epstein zeta functions*, Math. Comp.**29**(1975), 271–287. MR**409357**, DOI 10.1090/S0025-5718-1975-0409357-2 - Richard P. Brent,
*Irregularities in the distribution of primes and twin primes*, Math. Comp.**29**(1975), 43–56. MR**369287**, DOI 10.1090/S0025-5718-1975-0369287-1 - Richard P. Brent,
*Irregularities in the distribution of primes and twin primes*, Math. Comp.**29**(1975), 43–56. MR**369287**, DOI 10.1090/S0025-5718-1975-0369287-1

*n*-ten Einheitswurzeln gebildeten komplexen Zahlen,"

*Monatsh. Preuss. Akad. Wiss. Berlin*, 1861, pp. 1051-1053.

*Computers in Number Theory*, Academic Press, New York and London, 1971, pp. 149-151. R. SPIRA, Personal communication.

*Fibonacci Quart.*, v. 4, 1966, pp. 157-162. M. F. JONES, 22900D

*Approximations to the Square Roots of the Primes less than*100, reviewed in

*Math. Comp.*, v. 22, 1968, pp. 234-235, UMT

**22**. W. A. BEYER, N. METROPOLIS & J. R. NEERGAARD,

*Square Roots of Integers*2

*to*15

*in Various Bases*2

*to*10: 88062

*Binary Digits or Equivalent*, reviewed in

*Math. Comp.*, v. 23, 1969, p. 679, UMT

**45**.

*Proc. London Math. Soc.*, v. 28, 1928, pp. 358-372.

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Math. Comp.
**30**(1976), 371-380 - DOI: https://doi.org/10.1090/S0025-5718-76-99667-8