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On the Global Convergence of Broyden's Method*

By J. J. Moré and J. A. Trangenstein

Abstract.   We consider Broyden's 1965 method for solving nonlinear equations.   If the

mapping is linear, then a simple modification of this method guarantees global and Q-

superlinear convergence.   For nonlinear mappings it is shown that the hybrid strategy

for nonlinear equations due to Powell leads to R-superlinear convergence provided the

search directions form a uniformly linearly independent sequence.  We then explore

this last concept and its connection with Broyden's method.   Finally, we point out

how the above results extend to Powell's symmetric version of Broyden's method.

1. Introduction.  Let F: R" —*■ R" be a mapping with domain and range in real

«-dimensional Euclidean space R", and consider the problem of finding a solution to the

system of equations Fix) = 0 by Broyden's [1] method.

In this paper we show that a simple modification of Broyden's method leads to

global and ß-superlinear convergence if F is an affine function with nonsingular coeffi-

cient matrix.  This improves on a result of Broyden [2] which gives local and R-super-

linear convergence to the unmodified method.  For future reference, recall (for more

information see [7, Chapter 9]) that if a sequence {xk} converges to x*, then {xk} con-

verges Z?-superlinearly to x* if

lim   ||xk -x*||1/k = 0,
k-»-+°o

and that {xk} converges ß-superlinearly to x * if there is a sequence {ak} converging to

zero such that

n**+i -**[l<akll*fc-**ll,      k>0.

Clearly, ß-superlinear convergence implies Z?-superlinear convergence but the converse

does not hold.

If F is not affine, the above modification of Broyden's method fails to be globally

convergent, although an improvement of a result of Broyden, Dennis and Moré [3],

shows that it is locally and superlinearly convergent under very reasonable conditions.

In order to ensure the global convergence of Broyden's method we follow Powell's

[8] hybrid method.  For this algorithm Powell proved a global convergence result, but

did not analyze the rate of convergence.  In this paper we show that if the sequence

{xk} generated by the hybrid method converges to a point x* then F'(x*)rF(jc*) = 0

where F\x*) denotes the Jacobian matrix of F at x*. Thus if F\x*) is nonsingular

then Fix*) = 0, and under this condition, we show that in general {xk} converges R-

superlinearly to x*.
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524 J. J. MORE AND J. A. TRANGENSTEIN

The hybrid method requires "special iterations" which guarantee that the Jacobian

approximations in Broyden's method do not differ radically from the true Jacobians.

Powell's [8] special iterations guarantee this by making sure that the directions gener-

ated by the algorithm are uniformly linearly independent.  In Section 5 we examine

this concept and show that the various definitions in the literature are equivalent.  This

leads to particularly easy proofs of the results of Powell [8] on the behavior of the

matrices generated by Broyden's update.

Finally, in Section 6 we discuss the extension of the previous results to Powell's

[10] symmetric form of Broyden's update.

As far as notation is concerned, we assume that R" is equipped with the usual

inner product Oc, y) = xTy and ||*|| denotes the l2 vector norm or the corresponding

operator norm in Z,(Z?")—the linear space of all real matrices of order zz.   We shall also

use the Frobenius norm

0-1) U\\F = [tncciATA)]1>2

and the fact that for any A and B in L{R"),

0-2) \\AB\\F<\\A\\\\B\\F.

2. Broyden's Method.   Let F: R" —* Rn be given.  In its simplest form Broyden's

method is of the form

(2-1) xk+l=xk-BklFixk),

where, given an approximation BQ to F'(x0), the matrices {Bk} are generated by

(2-2) Bk+i =Bk+iyk-Bksk)sTJ\\sk\\2

and

(2-3) yk = fixk+1) - Fixk),      sk =xk + x - xk.

The motivation for Broyden's method is that the matrices generated by (2.2) are

good approximations to the Jacobian matrices and thus (2.1) resembles Newton's

method, but with the difference that (2.2) only requires one function evaluation and

0(n2) arithmetic operations while the Jacobian matrix requires the evaluation of zz2

partial derivatives.  Moreover, (2.1) can be carried out in 0(n2) operations while New-

ton's method requires 0{n3).

There are two ways to compute xk+x in 0(n2) arithmetic operations.  In the

first method the inverse of {Bk} can be computed by the Sherman-Morrison formula as

(24> Hk+i=Hk+(sk- Hkyk)slHkl(sk, Hkyk),

while in the second method a QR factorization of Bk is carried along; for example,

see the technique of Gill and Murray [6].  Either method can be done in 0(n2) arith-

metic operations per iteration but the latter method is recommended for stability reasons.

Further information and motivation for Broyden's method can be found in the
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survey paper [5] ; in particular, that paper contains a discussion of the following result

of Broyden, Dennis and Moré [3].

Theorem 2.1. Let F: R" -> R" be continuously differentiable in an open con-

vex set D, and assume that F{x*) = 0 and F'ix*) is nonsingular for some x* ED.  In

addition, suppose that F' is Lipschitz continuous at x*, and consider Broyden's method

as defined by (2.1), (2.2) and (2.3).  Then Broyden's method is locally and Q-super-

linearly convergent at x*.

To be more precise, the conclusion of this theorem means that there is an e > 0

and a S > 0 such that if ||jc0 - jc*ff < e and ||50 - F'(jc*)|| < 5, then Broyden's

method is well defined, and if {xk} is the sequence generated, then either xk = x* for

some k at which place the iteration stops, or {xk} converges ß-superlinearly to x*.

Broyden's method is sometimes modified by defining {xk} by (2.1) and (2.2) but

instead of (2.3),

(2.5) yk = F{xk + sk) - F{xk)

for some nonzero vector sk.  The proof of Theorem 2.1 shows that this version of

Broyden's method is locally and linearly convergent if sk satisfies a relationship of the

form

llSfcll < t? max{||;cfe+1 - x*||, ||*fc - **||}

provided xk,xk+x belong to D.   However, superlinear convergence will be lost unless

the direction of sk is chosen with some care.  For example, the choice sk = \\F{xk+x)\\u

for some fixed vector u leads to local and linear convergence, but rarely to.superlinear

convergence.  In this connection note that under the assumptions of Theorem 2.1,

Dennis and Moré [4] proved that if the sequence xk generated by (2.1) converges to

x* then {xk} converges ß-superlinearly to x* if and only if

\\[Bk-F'jx*)]{xk+x-xk)\\
(2.6) hm-= 0.

fc-*+o= H*/c+l     -   *fcll

This explains why the choice sk = \\F{xk+x)\\u rarely leads to superlinear convergence.

However, in Section 5 we will show that if the direction of sk is chosen so that

{sfc/||sfc||} is uniformly linearly independent, then the matrices {Bk} generated by (2.2)

converge to F'ix*) and thus (2.6) holds.  Hence, in this case we also have ß-super-

linear convergence, but note that if sk ^xk+x - xk, then the computation of (2.2)

would require an additional function evaluation unless F{xk + sk) is used at some other

stage of the calculation.

3. Broyden's Method for Linear Equations. We would like to improve Theorem

2.1 if F: R" —> Rn is affine with nonsingular coefficient matrix; that is,

(3.1) F\x) =Ax - b,      A G L{Rn) nonsingular.

To investigate this problem, first note that the matrices generated by (2.2) may be

singular. In fact, it is easy to verify that if Bk is nonsingular then Bk+X is nonsingular if and

only if {sk,Bklyk)¥1 0. This also follows from the following result, whose simple proof

can be found, for example, in [5, Lemma 4.4].
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Lemma 3.1.  Let u, v £ R".   Then det(Z + uvT) = 1 + <u, v).

This result also shows how to avoid singularity in Bk+1. Powell [9] sets

(3-2) Bk + 1 =Bk+ 9kiyk - Bksk)sîl\\sk\\2,

where 9k is chosen so that Bk+X is nonsingular.  To be more precise, given a £ (0, 1)

we choose 9k so that

(3.3) |detfifc+1|>o|det5k|,      \9k - 1| < a.

To see that this is possible, note that Lemma 3.1 implies that

|det*fc+1| = |detZ?fc||(l -9k) + 9k(Bk-lyk,sk)l\\sk\\2\.

Thus, if yk is defined by (Bk1yk, sk) s 7fc||sfc||2 then we can choose

[l, \yk\>o,

6k =    1 - sign(7k)o
——;-,      \7k\ < o,

1 - lk

where sign(0) = 1.  It is not too difficult to show that this choice of 9k provides a

number closest to unity so that (3.3) is satisfied.  In the rest of the paper we will only

assume that 9k is chosen to satisfy

(3-4) Bk+X nonsingular,    \Bk - 1| < § < 1.

Theorem 3.2. Let F: R" -* R" be given by (3.1) azzcZ consider Broyden's

method as defined by (2.1), (2.3), (3.2) and (3.4).  Then Broyden's method is globally

and Q-superlinearly convergent.

Proof.   The result follows from a careful estimation of the difference between

||Ffc+1|||. and l|Ffc||£. where Ek = Bk - A and || ||F is the Frobenius norm.  For this

note that

Ek+i=EkH-9ksksTkl\\sk\\2),

and therefore, direct calculation with \\E\\F = trace(FrF) yields

H^ + iIIf - II^Hf - 0*(2 - Ôk)(||FfcSfe||/||sfe||)2.

This implies that

y(\j£kfjA2(i - s? x (
and in particular,

(3.5) lim     ,,    i,    =0.

Now note that (Z?fc - A)sk = -F(xfc + 1) = -A{xk + X - x*) where x* = A~lb.

Therefore, if efc is defined by

\\A-l\\\\Eksk\\ ek\\sk\\,

then

llXft+i -**H<ezclM<efe[||xk + 1 - x*\\ + \\xk - x*\\
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and (3.5) clearly shows that {efc} converges to zero. The above inequality then implies

that

\\xk + x - x*\\< ek\\xk - x*||/(l -ek)

for k sufficiently large, and this proves that {xk} converges ß-superlinearly to x*.

Theorem 3.2 is interesting because to our knowledge it is the only iterative method

which is globally and superlinearly convergent for arbitrary nonsingular linear systems.

While the above-mentioned modification of Broyden's method leads to global and

superlinear convergence in the linear case, this does not hold for general nonlinear func-

tions.  In one dimension Broyden's method essentially reduces to the secant method,

and this method can cycle.

Example 3.3.  Let /:/?—► Z? be any continuously differentiable function such

that

/(±1) = ±1,      /(±(V5-2)) = ±

For example, f{x) = a arctan(pV) with a — 0.733 . . . and ß = 4.75 .... It can then

be verified that Broyden's method as defined by (2.1), (2.2) and (2.3) cycles if x0 = 1

and B0 = (3 — y/5)~1. To be more specific, it turns out that x2k+x = (—1)\\/5 — 2)

and that x2k = (- l)kx0. Also note that if Bk is defined by (3.2) and (3.3), instead of by

(2.2), then 0fc = 1 satisfies (3.3) if a < 0.37.

Example 3.3 shows that Broyden's method or its modification, may cycle and

diverge. On the other hand, Theorem 2.1 actually shows that the modification is still

locally and superlinearly convergent. This follows because the proof of Theorem 2.1

shows that e > 0 and S > 0 can be chosen so that if |bc0 - x*\\ < e and ||Z?0 - F'(x*)\\ < S,

then \\Bk - F'(x*)\\ < 28 for all k > 0.  Certainly S can be further restricted so that

9k = 1 satisfies either (3.3) or (3.4).  However, even if 9k = 1 is not chosen, we still

have local and superlinear convergence.

Theorem 3.4. Let F: R" -*■ R" satisfy the assumptions of Theorem 2.1, and

consider Broyden's method as defined by (2.1), (2.3), (3.2) azztf (3.4). Then Broyden's

method is locally and superlinearly convergent at x*.

This result follows from a modification to the proof of Theorem 2.1 as given by

Broyden, Dennis and Moré [3], so we will omit its proof.  Note that since Theorem

3.4 lets us choose any 9k which satisfies (3.4), this gives a certain amount of stability

to Broyden's method.

4. Powell's Hybrid Method.  In view of Example 3.3, Broyden's method must be

modified in order to achieve global convergence.  In this section we outline a modifi-

cation due to Powell [8] which achieves this aim; for a more thorough presentation

see the original papers [8], [9].

Powell's hybrid method was designed to find solutions to F(x) = 0 where F: R"

-*■ R" is continuously differentiable in some open set D, but we are not able or willing

to calculate the Jacobian matrix.  Basically, the method attempts to minimize the func-

tional \¡j: Rn -*R" defined by

(4.1) >«x) = (l/2)||FÍ*)||2,

m
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while making full use of the form of i//.

At the beginning of the /cth iteration, we have the iterate xk, an approximation

Jk to F'(xk) and a step-bound Ak such that the quadratic

(4.2) **(?) = 0/2)IIF(xfc) + /fcp||2

is a good approximation to ii(xk + p) for \\p\\ < Ak. Below we specify how a correc-

tion pk is determined with ||pk|| < Ak. Once this is done then the next iterate is given

by

xk+1 = xk + pk    if Hxk + Pk) < Wxk),
(4.3)

= xk otherwise.

Thus to complete the description of the /cth iteration we need to define pk, Ak+1, and

¿k + i-

The correction pk can either be chosen by an ordinary iteration or by a special

iteration.  The idea behind the choice of pk in an ordinary iteration is that the Newton

direction of F

(4.4) pN = _j-iF(Xk)

is suitable if \\pk\\ < Afc.  Otherwise pk should be chosen as a convex combination of

pk  and some multiple of the steepest (or gradient) direction of <I>k,

(4-5) PGk - -4Kxk),

which reduces <i>k in some sense.  Hence, if llpj^ll < Afc  then pk = pk , but if llpj^H >

Ak we examine <i>k on the ray along pk .  It is not difficult to verify that on this ray

<I>k stops decreasing at

(4-6) Pk = (\\PkWl\\JkPkW)2PÏ-

Thus, if ||pk|| > Ak  then it is reasonable to choose

Pk - \Pkl\\PkW-

If llPfcll < Ak we can decrease <i>k further by proceeding toward pk; in this case we

choose pk as the convex combination of pk and pk which minimizes <i>k subject to

\\pk\\ < Ak.  Hence, if \\pk\\ > Afc and ||pk|| < Ak, then pk is determined by finding

a £ (0, 1) such that

||(1 - a)pk + arfu = Ak

and setting pk = (1 - a)pk + apk .  To change the step-bound Afc in an ordinary

iteration we test whether or not

(4.7) Hxk) - Hxk +Pk)>P [*fc(0) - *fc(pk)],

where p £ (0, 1) is a given constant. If (4.7) holds, then the iteration is successful and

Ak+1 £ [Ak, juAk] for some p > 1. Otherwise the iteration is unsuccessful and Ak+1

£ [px Ak, p2Ak], where px < p2 < 1. In the program given by Powell [9] the values

p = 0.1, p = 2, Oj = p2 = 0.5 are used.
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This completes the description of how the correction vector pk is calculated and

how the step-bound Afc+1 is changed in an ordinary iteration.  Special iterations are

needed because sometimes it is convenient not to define pk by the procedure outlined

above.  This is particularly true if Jk+X is determined from Jk by Broyden's method;

see the discussion after Eq. (4.8).  At this point the particular method for deter-

mining pk in a special iteration is not important but we assume that ||pk|| < Ak and

that at most zz consecutive special iterations are necessary.  Finally, in a special iteration

Ak+i = V
The matrix Jk + X is determined from xk, pk and Jk in such a way that for some

fixed y > 0,

(a) Jk is nonsingular and \\Jk\\ < y for k > 0.

(4.8) (b)  If {xk} converges to x in D and {pk}

converges to zero, then {Jk} converges to F\x).

There are several ways to define {Jk} so that (4.8) is satisfied.  We will be partic-

ularly interested if it is determined by Broyden's method:

and 9k is chosen so that/fc + 1 is nonsingular and \9k — 1| < 9.  In this case, however,

(4.8) does not hold unless careful use is made of the special iterations.  For example,

if the sequence {pfc} does not span R", then there is a v # 0 with <i>, pk) = 0 for

k > 0 and then (4.9) implies that Jkv = J0v.  Hence, (4.8)(b) will not hold unless the

choice of JQ was somewhat fortunate.  On the other hand, in the next section we prove

that if the special iterations are used to guarantee that {pk} satisfies a uniform linear

independence condition, then (4.8) holds.

One way to guarantee that {pk} satisfies a uniform linear independence condition

is to choose, at periodic intervals, pk to be a suitable multiple of a unit basis vector so

that for some integer m > n,

{l"-""}       plWl' '     WPk + m\\\

If this strategy is used in connection with (4.9) then this amounts to replacing, at

periodic intervals, a column of Jk by a divided difference.  To see this, note that if

9k = 1 and pk = r¡e. is used in (4.9), then the /th column of Jk is replaced by

[F{xk+ne,)-Fixk)]ln

and the other columns of Jk are unchanged.  An equivalent method would just replace,

at periodic intervals, Jk by a divided difference approximation to F'(xfc).

Of course, it will not be possible to define Jk+X so that (4.8) is satisfied unless

F' is bounded on a set which contains the iterates.  With this in mind, note that

xk+x £ L where

L={xED: \\Pix)\\< \\Pix0)\\},

but that xk + pk may not lie in L.   Therefore, the algorithm requires a A > 0 such

that if
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LA = {yGR": \\y - x\\ < A for some x £ L},

then LA C Z), and in all cases Afc+ j is not allowed to exceed A.  Note that LA C D is

automatically satisfied if D = R" while if D is open but otherwise arbitrary and L is

compact, then there is always a A > 0 such that Z,A C D.

In what follows, Powell's hybrid method refers to the algorithm outlined above,

where in particular, the sequence {Jk} satisfies (4.8). The main convergence theorem

for this algorithm is due to Powell [8, Theorem 5].

Theorem 4.1. Let D be an open set such that LA C D and assume that F: R"

-> R" is continuously differentiable on D and F' is bounded on LA.   Then for each

e > 0 Powell's hybrid method produces a k such that \\JkFixk)\\ < e.

Since the main purpose of Powell's theorem is to prove that the algorithm termi-

nates, he leaves some questions unanswered.  For example, if {xk} converges to some

x* in A does it follow that F'ix*)TF{x*) - 0? Also, if F\x*) is nonsingular (and hence

Fix*) = 0), at what rate does {xk} converge to x*l  In the remainder of this section

we answer these two questions.

Theorem 4.2. Let F: R" —► R" satisfy the assumptions of Theorem 4.1 ozz the

open set D.  If the sequence {xk} generated by Powell's hybrid method converges to

some x* in D, then F'ix*)TF{x*) = 0.

Proof.  We first assume that there is an infinite number of successful Newton iter-

ations.  In this case, since (4.7) implies that

H*(**+l)ll<(l -p)\\Fixk)\\

whenever the kth iteration is a successful Newton iteration, and since for all iterations

||F(xk+1)|| < l|F(xfc)||, it follows that if there are an infinite number of successful Newton

iterations then {l|F(xfc)||} converges to zero and hence, F(x*) = 0.

Suppose now that there is a /c0 > 0 such that if k > k0 then the /cth iteration is

not a successful Newton iteration.  In this case, if k corresponds to an ordinary itera-

tion, then Afc+1 < p2Ak tf tne iteration is unsuccessful, or Ak + 1 < pAfe if the itera-

tion is successful.  Moreover, in the latter instance Afc = \\xk + x - xk\\ since pk =£ pk'.

Hence, in an ordinary iteration k with k > /c0,

Ak+l <max{p2Ak,/i|Ufc + 1 - xk\\}.

A special iteration sets Afc+1 = Afc, and there are at most zz consecutive special itera-

tions.  Thus, since {||xfc+1 - JCk||} converges to zero, it follows that {Afc} and hence,

{pk} converges to zero.  Now (4.8) guarantees that {Jk} converges to F'ix*), and then

Theorem 4.1 shows that F'(x*)rF(x*) = 0 as desired.

If we assume in Theorem 4.2 that F'{x*) is nonsingular, then Fix*) - 0.  The

following result shows that in this case the sequence {xk} will usually converge Z?-super-

linearly to x*.

Theorem 4.3. Let F: R" -* R" satisfy the assumptions of Theorem 4.1 on the

open set D, and assume that the sequence {xk} generated by Powell's hybrid method

converges to a point x* in D and that {pk} converges to zero.  If F'ix*) is nonsingular,

then F\x*) = 0 azzcz {xk} converges R-superlinearly to x*.
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Proof.   That F(jc*) = 0 follows from Theorem 4.2.  Moreover, since we have

assumed that {pk} converges to zero, (4.8) guarantees that {Jk} converges to F\x*),

and since F'ix*) is nonsingular, there is a o > 0 such that \\Jk l\\ < a.  It also follows

that if

T?k = sup{\\F'ixk + tpk) - Jk\\: 0 < t < 1},

then {nk} converges to zero.

For the most part, the proof consists of showing that eventually all the ordinary

iterations are successful.  This means that there is a kx > 0 such that if k is an ordinary

iteration and k > kx, then

(4.10) xk+1=xk+pk,      Ak+1>Ak.

But Ak + 1 = Ak for special iterations so that Ak+1 > Afc for all k > kx.  In particular,

since ||/k ' || < a it follows that

Hpj^lK o\\Fixk)\\ < Ak,

and thus all ordinary iterations eventually choose pk = pk. The first equation in

(4.10) now shows that

\\Fixk+1)\\ = \\F(xk+x) - Fixk) -JkPk\\ < T?k||pk|| < or}k\\F(xk)\\,

where k corresponds to an ordinary iteration. Since {nk} converges to zero, given e in

(0, 1) there is a k2 > 0 such that or\k < e for k > k2. Now recall that ||F(xk+1)|| <

||F(;ck)|| in all cases and that we have assumed that there is at least one ordinary itera-

tion in each set of n + 1 consecutive iterations. Hence, if / < {k - k2)/m where m =

zz + 1 then

\\Fixk)\\ < e\\Pixk_m)\\ < • • • <e'||F(xk_/m)||,

so that if / = /(/c) is the largest integer that does not exceed (/c - k2)/m, then

lim suplid)!!1'* <lim sup e'/k||F(xk )||1/fc < e1'"1.
fc->+°» fc->+oo 2

Since e > 0 was arbitrary, it follows that

(4.11) lim   \\Fixk)\\1,k = 0,

and since {xk} converges to x* and F'{x*) is nonsingular, (4.11) implies that {xk} con-

verges R-superlinearly to x*.

To complete the proof it is only necessary to show that eventually all the ordinary

iterations are successful.   For this we first prove that if k corresponds to an ordinary

iteration then

!llpGll3   I
V   ||/fc*G||2  j -

(4.13)        *ixk + pk) - <!>k(pk) < r,k\\pk\\{iT,kl2)\\pk\\ + ||F(xk) + Zkpk||},

where \p and <i>k are defined by (4.1) and (4.2), respectively.  To prove (4.12) note that
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if 0 < X < Ak then

^k(Pk)<\^PklWPkW)-

In particular, if Xk = min{Ak, ||pk||} where pk is defined by (4.6) then

(4.14) Hxk) - %(pk) > <t>k(0) - %(\p^l\\pG\\).

To estimate the right side of this inequality note that for any X > 0

*k(°)-M*J^) = WP?<
2/ H

Gi|3

and since XJ/^ II2 <||pfc7ll3,

**(0) - *fc(Afc^/ll^ll) > i\l2)\\pG\\.

It now follows from (4.14) and the definitions of Xk and pk that (4.12) holds.

To prove (4.13) note that

IH^fc + Pk)W - UHxk)+Jkpk\\\<rik\\pk\\,

and since cc2 - j32 < lev - ]3|{|a - ß\ + 2\ß\}, inequality (4.13) follows immediately

from the definitions of \¡j and 4>.

It is now easy to prove that eventually all the ordinary iterations are successful.

Note that ||pk|| < \\pk\\ and therefore,

<4-15) \\Pk\\<<?\\p$\\.

Hence (4.12) implies that

(4.16) 4i(xk) - $k(pk) > (l/2)i|p^|jl|pfctjmin{l, (cry)-2}.

Next note that l|F(xfc)|| < o\\pk\\ so that (4.13) and (4.15) imply that

(4.17) ^(xk + Pk) _ <t>k(Pk) < T,fc||pk||||pG||{((7?Jt/2) + T)a2 + a}.

It is now clear from (4.16) and (4.17) that there is an index kx > 0 such that for k ~> kx,

(i - P)Mxk) - %ipk)\ > Kxk + pk) - */c(pfc).

or equivalently,

Hxk) - Hxk + Pk) > P[*fc(0) - *kiPk)].

This shows that eventually all the ordinary iterations of the algorithm are successful and

concludes the proof.

Theorem 4.3 assumes that the sequence {pk} converges to zero. At first sight it

would seem that this follows from the fact that {xk} converges, but the following example

shows that if the choice of {Jk} is careless enough, then {pk} may not converge to zero.

Example 4.4. Let f:R—*Rbe defined by f(x) = x, and consider Powell's hybrid

method with p = px — p2 =0.5 and p = 2.  Assume that xk = (l/2)fc and Afc > 0.5;

we will show that it is possible to choose {/k} so that xk+2 = (l/2)fc+ ï and Ak + 2 = Ak.
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To see this, note that if Jk = 2 then pk = pk  is successful and hence, xk+x =

(l/2)fc + 1.  Since the iteration is successful, we are allowed to take Ak+1 = 2Ak.  Now

choose Zk+i = —2~k.  Then pk = pk, but in this case the step is unsuccessful and

moreover, xk+2 = xk+x and Ak+2 = (l/2)Ak+1.  Hence, xk+2 = (l/2)fe+1 and Ak+2

= Ak so that the same pattern can be repeated.  Thus  {xk} converges to jc* = 0 but

the rate of convergence is not superlinear.

Example 4.4 shows that some subsequence of {||pk||} can be bounded away from

zero and therefore, (4.8) does not force {Jk} to converge to F'(x*). There are several

ways to remedy the situation.

One solution consists of setting Jk+l = Jk if \\F(xk + pk)|| > ||F(xk)|| in the

ordinary iterations, and taking care, in the special iterations, that the correction vector

pk converges to zero if {xk} converges.  For example, this can be done by taking ||pk||

= 0(\\xk - xk_j||). This modification would guarantee that {/k} is only calculated

from a sequence {pk} which converges to zero if {xk} converges.

Another solution would be to modify the definition of the step-bound and require

Ak+1 £ [px\\Pk\\, P2\\Pj]

if the /cth step is unsuccessful, and Afc+1 £ [||pk||, p||pkll] if the step is successful. In

this case

Ak+1 <max.{p2Ak,p||xk+1 - xk\H},

and thus if {xk} converges then Ak converges to zero and hence, {pk} must also con-

verge to zero. This choice of step-bound is analogous to the one used in Powell's [10]

hybrid method for unconstrained minimization.

Note that the second solution is actually a modification of the hybrid method and

thus requires new proofs for the previous three results.  This can be done, so from a

theoretical point of view both modifications appear to be equally reasonable. Therefore,

it would be interesting to compare numerically the above two approaches.

5. Uniform Linear Independence.  The purpose of this section is to study the con-

cept of uniform linear independence and to show that most of the definitions available

in the literature are, in fact, equivalent.  As our starting point, we take a definition that

Ortega and Rheinboldt [7] used in the study of iterative methods for unconstrained

minimization.

Definition 5.1.  A sequence of unit vectors {zz} in R" is uniformly linearly inde-

pendent if there is a ß > 0, a k0 > 0 and an m > n, such that for k >k0 and ||x|| = 1,

maxiJCc, Uj)\: j = k + 1, . . . , k + m} > ß.

This definition requires that each set of m consecutive vectors in the sequence

{«•} spans R".  However, it requires more.  For example, if u2k = (lfy/k2 + l)(k, 1)

and u- = (1,0) for / odd, then each m = 2 consecutive vectors spans R2  but this

sequence is not uniformly linearly independent.

Also note that the term "uniformly linearly independent" is a misnomer since, of

course, the sequence {«•} is not linearly independent.  It would be better to say that
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{Uj} spans R" uniformly if the sequence satisfies Definition 5.1.

Lemma 5.2. Let ux, . . . ,um be unit vectors in R" and assume that 9} £ (0, 2)

for 1 < / < m.   Then {ux, . . . , um} spans R" if and only if

m

Y[[I-9jUjuJ]   <1.
/=i

Proof.   Assume first that {«,,..., «m} does not span R", and let
m

P=X\[I-9jUjUJ].
/=i

Then there is an x # 0 such that (x, u) = 0 for 1 < / < m, and thus Px = x.   In parti-

cular, ||Z>|| > 1.

Assume now that {ux, . . . , um} spans R".  To show that \\P\\ < 1 choose zx in

R" and define

(5.1) z/+i = (Z - 9jUjuJ)Zj,     j = 1, . . . , m,

so that zm + x = Pzx. We now show that ||zm + 1|| < 1 if ||Zj|| = 1.  For this note that

\\Zj+i\\2 = \\Zj\\2 -0j(2-9j)(Uj,Zj)2.

In particular, l|z/+1ll < Hay||, so that if l|zm + 1|| = 1 then l|z/+1|| = llzyll, and by the

previous relationship («•, z> = 0 for 1 </ < m.   Thus (5.1) implies z,+ 1 = z, for 1 <

/ < Z7Z and therefore,

<Uj, Zj) = (uf, Zj> = 0,      1 </ <m.

Since {«j, ...,«} spans R" it follows that zx = 0.  This contradicts the assumption

IIZjH = 1 and therefore proves the result.

Lemma 5.2 is closely related to a result of Powell's [11, Theorem 6] in which he

shows that the special iterations generated by his algorithm satisfy (5.2)(b) below.  In

the result that follows A+ denotes the generalized inverse AT(AAT)~l of an zz by m

matrix of rank zz.

Theorem 5.3. Let {uk} be a sequence of unit vectors in R".   Then the follow-

ing conditions are equivalent.

(a) The sequence {uk} is uniformly linearly independent.

(b) For any § £ [0, 1) there is a constant a £ (0, 1) such that if\9j- 11 < ê,

then
k + m

(5.2) i!    U-OjUjUf]   <a,      k>k0.
j=k + l

(c) There is a constant 7 > 0 such that for each \\x\\ = 1 and k> k0 there are

coefficients 17 (jc) such that for

k + m

(5.3) *=   Z    n,(x)u-,      |T7,(*)|<7.
j=k+l

(d) If the n by m matrix Akm is defined by

(5'4) Ak,m = [«*+!.•• •»"*+«!.

then there is a constant p > 0 such that for k > k0,Akm has full rank and ||^km|| <p.
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Proof. Assume first that {uk} is uniformly linearly independent according to Defini-

tion 5.1, and let us show that (5.2) holds.  If not, there is a subsequence {k¡} such that

(5.5) lim

kj+m

n r'-vW]
11/=*/+1

A compactness argument now shows that there is a subsequence of {k¡} (without loss of

generality we assume that it is the full sequence) such that «k.+ - and 9k.+ - converge for

1 </ < zzz.   If w? and 9f are the values to which they converge, then (5.5) implies that

n [/- 9fufUfT]
/-I

= 1.

Since ôj* £ (0, 2), Lemma 5.2 implies that {«jf, ...,«*,} do not span R".  However,

Definition 5.1 implies that

maxiJOc, uf)\: j = \, . . . ,m}>ß,

and this in turn implies that u*, . . . , u*^ span R".  This contradiction shows that (a)

implies (b).

Assume now that (b) holds, and let ê = 0.  Then there is a constant a £ (0, 1)

such that for k > kQ,
k + m

ii^"= n v-Ujuj]
y=fc+l

<a.

We now proceed as in the proof of Lemma 5.1 and define

(5.6) zj+x = (I - UjuJ)Zj,      k + 1</ < k +

Thenzfc + m + l  =Pkzk + l and

z,

m.

k + m

■k+l  - zk + m + l  -     £    <Uj,Zj)Uj.

j=k+l

But zk+1 is arbitrary, so for any given ||x|| = 1 it can be chosen so that (Z - Pk)zk+X

= x.   Thus the above expression implies that x = ^J'k^l(u., z^iu,.  To bound the

coefficients <«y, zy> note that (5.6) implies that l|z-+1|| < ||z-||  and thus,

\(Uj, z¡>\ < ||zk + 1|| < ||(7 - PkyH < (1 - a)"1.

Hence, (5.3) holds with y = (1 - a)-1.

Assume that (c) holds and let ||x|| = 1 be given.  Then (5.3) implies that Ak is of

full rank and that

Akz=x,      z = (z?k+1,. . . ,Tjk+m).

Since \\A^x\\ < ||z|| if Akz = x, we have that |L4¿"jc|| < azz1/27 and therefore, ||.4+|| <

m1l2y.  Thus (d) holds with p = m1^2y.

If (d) holds and ||jc|| = 1, then since Ak has full rank, x = Ak(Akx).  Hence,

1 = ||x||2 =(aTx,A+x)<p\\aTX\\.

It follows that (a) holds with ß = l/(m1/2p).

As noted before, (a) is due to Ortega and Rheinboldt [7].  Conditions (b) and (c)
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were used by Powell [8], [10] in a hybrid strategy for unconstrained minimization and

nonlinear equations, respectively, but Powell did not investigate the relationship between

these two conditions.  Finally, (d) seems to be new in the case m> n, although when

m = zz it appears quite frequently.

It should also be clear that there are other variations of Theorem 5.3. In particu-

lar, (d) is equivalent to the existence of px > 0 such that

(e) mkmAlm)-H<H1    for k>k0.

This follows from the fact that if the zz by m matrix A is of full row rank then ||.4 + ||2

= \\(aat)-i\\.
Theorem 5.4. Let {uk} be a sequence of unit vectors in R".   Then the follow-

ing conditions are equivalent:

(a) 77ze sequence {uk} is uniformly linearly independent with m = n.

(b) There is a a> 0 such that for k > k0, |det Ak n\> a.

(c) There is a p> 0 such that for k>kQ, \\Ak^n\\ < p.

Proof. Theorem 5.3 implies that (a) and (c) are equivalent. Now if (c) holds and

X is an eigenvalue of Ak n, then |X| > 11 p. Thus, |det A\ > 1/p" so that (b) holds with

o=l/p".

To show that (b) implies (c), let Akn = QL where L is lower triangular and ß is

orthogonal. Then all the columns of L are of unit norm and thus, |L| < 1.  Moreover,

since |det L\> a, we also have that |/f/| > o.  Now, given x in R" with ||Z,x|| = 1 it

follows, by induction, that |^| < 2/_1/V where x = (£,.).  Hence, ||jc|| < (2/a)"  and

therefore,

Mfc,jIii = iiz.-iß-iii = iii-iii<(2/or.

Thus, (c) holds with p = (2/a)".

To illustrate the usefulness of Theorem 5.3 we present simple proofs of the asymp-

totic behavior of the matrices generated by Broyden's update.   For this purpose consi-

der

(5.7) Jk+i=Jk+0klyk~^k]pTk,   yk = Kxk + Pk) - F(xk),

where F: Rn —*■ Rn is continuously differentiable in an open set D, and assume that the

following conditions are satisfied.

(a)  The sequence {xk} remains in some set D0 C D and

|0k - 1| <0 for some 9 £(0, 1).

(5.8) (b)  The sequence of nonzero vectors {pk} is uniformly

linearly independent, and the line segment from xk to

xk + pk lies in D0.

As an initial step in analyzing (5.7), we will need the following simple result.

Lemma 5.5. Let {4>k} and {8k} be sequences of nonnegative numbers such that

'¡'k+m < a<t>k + 5fe f°r some fixed inteSer m>\ and a&(0, 1). If {8k} is bounded,

then {¡pk} is also bounded, and if in addition, {8k} converges to zero, then {<¡>k} con-

verges to zero.

Proof.   Assume first that m = 1.  It can then be verified that
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<t>k<ak4>0 + ¿   ee*-%
z'=o

so that if S is a bound for {5k}, then <pk < ak<p0 + 8(1 - a)-1.  It follows that {<¡>k}

is bounded; a similar argument shows that if {5k} converges to zero then {0k} also con-

verges to zero.  If m > 1 let <pk = 4>km+i for any integer 0 < i < m - 1.  Then 4>k+x

< a<pk + 8km+i, and thus the above argument shows that if {5fc} is bounded, then

{0k} is bounded for any 0 < i < m - 1, and therefore, {<pk} is bounded.  Similarly, if

{Sk} converges to zero, then {<¡>k} also converges to zero.

The following two results are due to Powell [8], but since he used version (c) of

Theorem 5.3, his proofs are quite involved.

Theorem 5.6. Let F: R" -*■ R" be continuously differentiable on the open set

D and assume that F' is bounded on some D0 C D. If the sequence {Jk} is defined by

(5.7) and assumptions (5.8) hold, then {Jk} is bounded.

Proof.   Equation (5.7) shows that
T T

j      = / n  +9 ykPk       n  -1-9 PkP*
4+1    JkQk+ek]]Pkf,    Qk-i   0k||pj2-

Now note that ||ßk|| < 1 and that |0k| < 2 so that an induction argument on zzz yields

k + m     \\y.\\

ll'*+m + ill<ll^+iöfc+i---ßfc+JI + 2    £     -rrh.
j=k+l   "Pj"

If \\F'(x)\\ < p for x in D0, then \\yf\\ < p\\Pj\\. Therefore, Theorem 5.3 shows that

there is a k0 > 0 and a £ (0, 1) such that IIZk+m + 1|| < a||/k+1|| + 2mp. The result

now follows from Lemma 5.5.

For the application of this result to the hybrid method, D0 = LA.  Also note

that Theorem 5.6 has applications to least squares methods since this result is unchanged

if F maps Rn into Rp for some p =£ zz. These same remarks apply to the next result.

Theorem 5.7. Let F: R" -*• R" be continuously differentiable in the open set

D and consider the sequence {Jk} defined by (5.7). If assumptions (5.8) hold, and in

addition {xk} converges to some x in D and {pk} converges to zero, then {Jk} con-

verges to F'(x).

Proof.   The proof of this result is very similar to that of Theorem 5.6.  In fact,

(5.7) shows that

Jk+i - F'ix) = [Jk - F'(x)]Qk + ̂ «'ffP*]P*-

Also note that Hj^ - F'(x)pk|| < e^llp^ll where

ek = max{||F'(xk + tpk) - F'{x)\\: 0 < t < 1}.

Thus an induction argument on zzz and Theorem 5.3 show that there is a k0 ~> 0 and

a £ (0, 1) such that
v       ' k+m

Wh+m + i - F\x)W < <*||/k+1 - F'(x)\\ + 2    £   ey.
j=k+l

Since {ek} converges to zero, the result follows from Lemma 5.5.

The proofs of Theorems 5.6 and 5.7 are similar to those presented by Powell [10]

for the symmetric form of Broyden's update. However, here the assumptions are weaker,
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and our formulation clearly shows that these results do not depend on the particular

algorithms which generate {xk} and {pk}.

Finally we note that Powell [8] and Schwetlick [13] discuss algorithms for main-

taining uniform linear independence.

6. Powell's Symmetric Version of Broyden's Method.  Assume as before that

F: R" —*■ R" is continuously differentiable on some open set D, but in addition, sup-

pose that F'(x) is symmetric for all x in D.   In this case it is advantageous to modify

update (3.2) so as to take into account the symmetry of F'.  One such modification is

due to Powell [10] :

(6.1)

R -R     +fí     VkSk+SkVk        n2<Vk>Sk\    J

vk=yk -5fcsfc.

where the parameter 0k is chosen so that Bk+X is nonsingular.  In this section we point

out how the results of the previous section are changed if (3.2) is replaced by (6.1).

For the motivation and derivation of this update in the case 0k = 1 we refer to

the survey article [5].  In this paper we follow Powell [11] and outline how 0k can be

chosen so that Bk + X is nonsingular and (3.4) holds for some 0.

It is not too difficult to show (see, for example, Lemma 7.6 in [5]) that as a

consequence of Lemma 3.1,

det(Z + uvT + pqT) = (1 + <zz, v))(\ + <p, <7» - (u, qXv, p).

From this identity and after some manipulation it follows that if Bk = Hkl is non-

singular, then det Bk + X = 0k(0k)det Bk where

* r/n      i      ?/i <Sfc' HkVk)  i   /)2 <sk. *W2 - <*fc. HkskY»k, Hkvk + sk)
h{6) = l ~ 2Ö^F~   e K\f

Given a in (0, 1), Powell [11] chooses 0k = 1 if |0k(l)| > a, and otherwise, 0k is

chosen to be a number closest to unity such that 0k(0) = a.  An important point about

this choice of 0k is that

|0k-l|<[2a/(a+ l)]1'2.

However, we emphasize that in this paper 0k need only satisfy (3.4).

It is now natural to consider the symmetric analogue of Broyden's method in

which the sequence {xk} is defined by (2.1), (2.3) and {Bk} is generated by (6.1) and

(3.4) with BQ symmetric and nonsingular.  This method is known as the Powell-sym-

metric-Broyden algorithm.

Theorem 6.1. Let F: Rn -*■ R" satisfy the assumptions of Theorem 2.1 and in

addition, suppose that F'(x*) is symmetric. Then the Powell-symmetric-Broyden algo-

rithm is locally and superlinearly convergent at x*.

This result is due to Broyden, Dennis and Moré [3] if 0k = 1 ; if 0k is just

restricted by (3.4), the proof is very similar, so it is omitted.
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Theorem 6.1 is the analogue of Theorem 3.4; the following result parallels

Theorem 3.2.

Theorem 6.2. Let F: R" -* R" be defined by F(x) = Ax - b where A in

L(R") is symmetric and nonsingular.   Then the Powell-symmetric-Broyden algorithm is

globally and superlinearly convergent.

Proof.   If Ek = Bk - A then (6.1) implies that

Fk+1 = QkEkQk,      Qk = I- eksks¡l\\sk\\2,

and since ||ßk|| < 1, estimate (1.2) yields that

\\Ek+1\\2F<\\EkQkfp.

However, in the proof of Theorem 3.2 we proved

WEkQkW2F = WFk\\2F - 0*(2 - 9kX\\Eksk\\l\\sk\\)2,

so that the last three estimates show that

(1 - 8)2{\\Eksk\\l\\sk\\)2 < \\Ek\\2F - \\Ek+1\\2F.

This inequality implies (3.5) and thus the proof proceeds as in Theorem 3.2.

It should now be clear that Theorems 5.6 and 5.7 remain essentially unchanged

if {Jk} is generated by

j r     i  fl    "fcPfe  + PkVï      n2 <vk> Pfc> „     T
(62) h+l-h+K Wll h   ||/7fc||4    PkPk>

vk = FiXk + Pk) - F(xk) - JkPk>

with J0 symmetric; the only difference is that now F'ix) is assumed to be symmetric

for x in D.

7. Concluding Remarks.  It is interesting to compare our results with those

obtained for Powell's 1970 hybrid method [10] for the unconstrained minimization of

a functional /

Powell [12] shows that if update (6.1) is used without special iterations, then

there is global and superlinear convergence.  However, his results do not apply to the

functional i// defined by (4.1) because he assumes that the gradient of the functional

can be calculated exactly.  It is an open question whether Theorems 4.1 and 4.2 hold

for the sequence {Jk} defined by (5.7) if no special iterations are performed, but our

numerical experiments show that in most cases special iterations are numerically desir-

able.

Thomas [14] in his Ph.D. thesis shows that if Powell's 1970 hybrid method is

slightly modified then, with special iterations, the sequence {V/(xk)} converges to zero,

while Powell only shows that this holds for some subsequence.  It would be interesting

to show that a similar result holds for the hybrid method of this paper so that in

Theorem 4.1 we actually obtain the convergence of {||/krZ;l(jck)||} to zero.
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