A note on extended Gaussian quadrature rules
HTML articles powered by AMS MathViewer
- by Giovanni Monegato PDF
- Math. Comp. 30 (1976), 812-817 Request permission
Abstract:
Extended Gaussian quadrature rules of the type first considered by Kronrod are examined. For a general nonnegative weight function, simple formulas for the computation of the weights are given, together with a condition for the positivity of the weights associated with the new nodes. Examples of nonexistence of these rules are exhibited for the weight functions $(1-x^2)^{\lambda - 1/2}$, $e^{-x^2}$ and $e^{-x}$. Finally, two examples are given of quadrature rules which can be extended repeatedly.References
- M. M. Chawla, Error bounds for the Gauss-Chebyshev quadrature formula of the closed type, Math. Comp. 22 (1968), 889–891. MR 239756, DOI 10.1090/S0025-5718-1968-0239756-X
- Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0448814
- Aleksandr Semenovich Kronrod, Nodes and weights of quadrature formulas. Sixteen-place tables, Consultants Bureau, New York, 1965. Authorized translation from the Russian. MR 0183116
- T. N. L. Patterson, The optimum addition of points to quadrature formulae, Math. Comp. 22 (1968), 847–856; addendum, ibid. 22 (1968), no. 104, loose microfiche supp., C1–C11. MR 0242370, DOI 10.1090/S0025-5718-68-99866-9 T. N. L. PATTERSON, "Algorithm 468-Algorithm for automatic numerical integration over a finite interval," Comm. ACM, v. 16, 1973, pp. 694-699. R. PIESSENS, "An algorithm for automatic integration," Angewandte Informatik, v. 9, 1973, pp. 399-401.
- Ju. S. Ramskiĭ, The improvement of a certain quadrature formula of Gauss type, Vyčisl. Prikl. Mat. (Kiev) 22 (1974), 143–146, 173 (Russian, with English summary). MR 0353638 W. SQUIRE, Integration for Engineers and Scientists, American Elsevier, New York, 1970.
- G. Szegö, Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören, Math. Ann. 110 (1935), no. 1, 501–513 (German). MR 1512952, DOI 10.1007/BF01448041
Additional Information
- © Copyright 1976 American Mathematical Society
- Journal: Math. Comp. 30 (1976), 812-817
- MSC: Primary 65D30
- DOI: https://doi.org/10.1090/S0025-5718-1976-0440878-3
- MathSciNet review: 0440878