## Higher order local accuracy by averaging in the finite element method

HTML articles powered by AMS MathViewer

- by J. H. Bramble and A. H. Schatz PDF
- Math. Comp.
**31**(1977), 94-111 Request permission

## Abstract:

Let ${u_h}$ be a Ritz-Galerkin approximation, corresponding to the solution*u*of an elliptic boundary value problem, which is based on a uniform subdivision in the interior of the domain. In this paper we show that by "averaging" the values of ${u_h}$ in the neighborhood of a point

*x*we may (for a wide class of problems) construct an approximation to $u(x)$ which is often a better approximation than ${u_h}(x)$ itself. The "averaging" operator does not depend on the specific elliptic operator involved and is easily constructed.

## References

- Ivo Babuška,
*The finite element method with Lagrangian multipliers*, Numer. Math.**20**(1972/73), 179–192. MR**359352**, DOI 10.1007/BF01436561 - James H. Bramble,
*A survey of some finite element methods proposed for treating the Dirichlet problem*, Advances in Math.**16**(1975), 187–196. MR**381348**, DOI 10.1016/0001-8708(75)90150-4 - J. H. Bramble and S. R. Hilbert,
*Bounds for a class of linear functionals with applications to Hermite interpolation*, Numer. Math.**16**(1970/71), 362–369. MR**290524**, DOI 10.1007/BF02165007 - James H. Bramble, Joachim A. Nitsche, and Alfred H. Schatz,
*Maximum-norm interior estimates for Ritz-Galerkin methods*, Math. Comput.**29**(1975), 677–688. MR**0398120**, DOI 10.1090/S0025-5718-1975-0398120-7 - J. H. Bramble and J. E. Osborn,
*Rate of convergence estimates for nonselfadjoint eigenvalue approximations*, Math. Comp.**27**(1973), 525–549. MR**366029**, DOI 10.1090/S0025-5718-1973-0366029-9 - J. H. Bramble and A. H. Schatz,
*Estimates for spline projections*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér.**10**(1976), no. R-2, 5–37. MR**0436620** - J. H. Bramble and A. H. Schatz,
*Higher order local accuracy by averaging in the finite element method*, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974) Publication No. 33, Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 1–14. MR**0657964** - James H. Bramble and Miloš Zlámal,
*Triangular elements in the finite element method*, Math. Comp.**24**(1970), 809–820. MR**282540**, DOI 10.1090/S0025-5718-1970-0282540-0 - Carl de Boor and Blâir Swartz,
*Collocation at Gaussian points*, SIAM J. Numer. Anal.**10**(1973), 582–606. MR**373328**, DOI 10.1137/0710052 - Jim Douglas Jr. and Todd Dupont,
*Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary problems*, Topics in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972) Academic Press, London, 1973, pp. 89–92. MR**0366044** - Jim Douglas Jr., Todd Dupont, and Mary Fanett Wheeler,
*Some superconvergence results for an $H^{1}$-Galerkin procedure for the heat equation*, Computing methods in applied sciences and engineering (Proc. Internat. Sympos., Versailles, 1973) Lecture Notes in Comput. Sci., Vol. 10, Springer, Berlin, 1974, pp. 288–311. MR**0451774** - Avner Friedman,
*Partial differential equations*, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR**0445088** - J.-L. Lions and E. Magenes,
*Non-homogeneous boundary value problems and applications. Vol. I*, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR**0350177** - J. Nitsche,
*Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind*, Abh. Math. Sem. Univ. Hamburg**36**(1971), 9–15 (German). MR**341903**, DOI 10.1007/BF02995904 - Joachim A. Nitsche and Alfred H. Schatz,
*Interior estimates for Ritz-Galerkin methods*, Math. Comp.**28**(1974), 937–958. MR**373325**, DOI 10.1090/S0025-5718-1974-0373325-9
I. J. SCHOENBERG, "Contributions to the problem of approximation of equidistant data by analytic functions," Parts A, B, - Vidar Thomée,
*Spline approximation and difference schemes for the heat equation*, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 711–746. MR**0403265** - Vidar Thomée and Burton Wendroff,
*Convergence estimates for Galerkin methods for variable coefficient initial value problems*, SIAM J. Numer. Anal.**11**(1974), 1059–1068. MR**371088**, DOI 10.1137/0711081

*Quart. Appl. Math.*, v. 4, 1946, pp. 45-99, 112-141. MR

**7**, 487; 8, 55.

## Additional Information

- © Copyright 1977 American Mathematical Society
- Journal: Math. Comp.
**31**(1977), 94-111 - MSC: Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1977-0431744-9
- MathSciNet review: 0431744