Higher order local accuracy by averaging in the finite element method

Authors:
J. H. Bramble and A. H. Schatz

Journal:
Math. Comp. **31** (1977), 94-111

MSC:
Primary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1977-0431744-9

MathSciNet review:
0431744

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a Ritz-Galerkin approximation, corresponding to the solution *u* of an elliptic boundary value problem, which is based on a uniform subdivision in the interior of the domain. In this paper we show that by "averaging" the values of in the neighborhood of a point *x* we may (for a wide class of problems) construct an approximation to which is often a better approximation than itself. The "averaging" operator does not depend on the specific elliptic operator involved and is easily constructed.

**[1]**Ivo Babuška,*The finite element method with Lagrangian multipliers*, Numer. Math.**20**(1972/73), 179–192. MR**359352**, https://doi.org/10.1007/BF01436561**[2]**James H. Bramble,*A survey of some finite element methods proposed for treating the Dirichlet problem*, Advances in Math.**16**(1975), 187–196. MR**381348**, https://doi.org/10.1016/0001-8708(75)90150-4**[3]**J. H. Bramble and S. R. Hilbert,*Bounds for a class of linear functionals with applications to Hermite interpolation*, Numer. Math.**16**(1970/71), 362–369. MR**290524**, https://doi.org/10.1007/BF02165007**[4]**James H. Bramble, Joachim A. Nitsche, and Alfred H. Schatz,*Maximum-norm interior estimates for Ritz-Galerkin methods*, Math. Comput.**29**(1975), 677–688. MR**0398120**, https://doi.org/10.1090/S0025-5718-1975-0398120-7**[5]**J. H. Bramble and J. E. Osborn,*Rate of convergence estimates for nonselfadjoint eigenvalue approximations*, Math. Comp.**27**(1973), 525–549. MR**366029**, https://doi.org/10.1090/S0025-5718-1973-0366029-9**[6]**J. H. Bramble and A. H. Schatz,*Estimates for spline projections*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér.**10**(1976), no. R-2, 5–37. MR**0436620****[7]**J. H. Bramble and A. H. Schatz,*Higher order local accuracy by averaging in the finite element method*, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 1–14. Publication No. 33. MR**0657964****[8]**James H. Bramble and Miloš Zlámal,*Triangular elements in the finite element method*, Math. Comp.**24**(1970), 809–820. MR**282540**, https://doi.org/10.1090/S0025-5718-1970-0282540-0**[9]**Carl de Boor and Blâir Swartz,*Collocation at Gaussian points*, SIAM J. Numer. Anal.**10**(1973), 582–606. MR**373328**, https://doi.org/10.1137/0710052**[10]**Jim Douglas Jr. and Todd Dupont,*Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary problems*, Topics in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972) Academic Press, London, 1973, pp. 89–92. MR**0366044****[11]**Jim Douglas Jr., Todd Dupont, and Mary Fanett Wheeler,*Some superconvergence results for an 𝐻¹-Galerkin procedure for the heat equation*, Computing methods in applied sciences and engineering (Proc. Internat. Sympos., Versailles, 1973) Springer, Berlin, 1974, pp. 288–311. Lecture Notes in Comput. Sci., Vol. 10. MR**0451774****[12]**Avner Friedman,*Partial differential equations*, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR**0445088****[13]**J.-L. Lions and E. Magenes,*Non-homogeneous boundary value problems and applications. Vol. I*, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth; Die Grundlehren der mathematischen Wissenschaften, Band 181. MR**0350177****[14]**J. Nitsche,*Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind*, Abh. Math. Sem. Univ. Hamburg**36**(1971), 9–15 (German). MR**341903**, https://doi.org/10.1007/BF02995904**[15]**Joachim A. Nitsche and Alfred H. Schatz,*Interior estimates for Ritz-Galerkin methods*, Math. Comp.**28**(1974), 937–958. MR**373325**, https://doi.org/10.1090/S0025-5718-1974-0373325-9**[16]**I. J. SCHOENBERG, "Contributions to the problem of approximation of equidistant data by analytic functions," Parts A, B,*Quart. Appl. Math.*, v. 4, 1946, pp. 45-99, 112-141. MR**7**, 487; 8, 55.**[17]**Vidar Thomée,*Spline approximation and difference schemes for the heat equation*, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 711–746. MR**0403265****[18]**Vidar Thomée and Burton Wendroff,*Convergence estimates for Galerkin methods for variable coefficient initial value problems*, SIAM J. Numer. Anal.**11**(1974), 1059–1068. MR**371088**, https://doi.org/10.1137/0711081

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0431744-9

Article copyright:
© Copyright 1977
American Mathematical Society