Interior maximum norm estimates for finite element methods
HTML articles powered by AMS MathViewer
- by A. H. Schatz and L. B. Wahlbin PDF
- Math. Comp. 31 (1977), 414-442 Request permission
Abstract:
Interior a priori error estimates in the maximum norm are derived from interior Ritz-Galerkin equations which are common to a class of methods used in approximating solutions of second order elliptic boundary value problems. The estimates are valid for a large class of piecewise polynomial subspaces used in practice, which are defined on quasi-uniform meshes. It is shown that the error in an interior domain ${\Omega _1}$ can be estimated with the best order of accuracy that is possible locally for the subspaces used plus the error in a weaker norm over a slightly larger domain which measures the effects from outside of the domain ${\Omega _1}$.References
- Ivo Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg. MR 0421106
- James H. Bramble, A survey of some finite element methods proposed for treating the Dirichlet problem, Advances in Math. 16 (1975), 187–196. MR 381348, DOI 10.1016/0001-8708(75)90150-4
- James H. Bramble, Joachim A. Nitsche, and Alfred H. Schatz, Maximum-norm interior estimates for Ritz-Galerkin methods, Math. Comput. 29 (1975), 677–688. MR 0398120, DOI 10.1090/S0025-5718-1975-0398120-7
- J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), 525–549. MR 366029, DOI 10.1090/S0025-5718-1973-0366029-9
- J. H. Bramble and A. H. Schatz, Estimates for spline projections, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 10 (1976), no. R-2, 5–37. MR 0436620
- J. H. Bramble and V. Thomée, Interior maximum norm estimates for some simple finite element methods, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 5–18 (English, with French summary). MR 359354
- James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809–820. MR 282540, DOI 10.1090/S0025-5718-1970-0282540-0
- P. G. Ciarlet and P.-A. Raviart, General Lagrange and Hermite interpolation in $\textbf {R}^{n}$ with applications to finite element methods, Arch. Rational Mech. Anal. 46 (1972), 177–199. MR 336957, DOI 10.1007/BF00252458
- P. G. Ciarlet and P.-A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2 (1973), 17–31. MR 375802, DOI 10.1016/0045-7825(73)90019-4
- Jim Douglas Jr., Todd Dupont, and Lars Wahlbin, Optimal $L_{\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems, Math. Comp. 29 (1975), 475–483. MR 371077, DOI 10.1090/S0025-5718-1975-0371077-0
- Stephen Hilbert, A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions of differential equations, Math. Comp. 27 (1973), 81–89. MR 331715, DOI 10.1090/S0025-5718-1973-0331715-3
- Fritz John, General properties of solutions of linear elliptic partial differential equations, Proceedings of the Symposium on Spectral Theory and Differential Problems, Oklahoma Agricultural and Mechanical College, Stillwater, Okla., 1951, pp. 113–175. MR 0043990
- Carlo Miranda, Partial differential equations of elliptic type, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2, Springer-Verlag, New York-Berlin, 1970. Second revised edition. Translated from the Italian by Zane C. Motteler. MR 0284700
- Frank Natterer, Über die punktweise Konvergenz finiter Elemente, Numer. Math. 25 (1975/76), no. 1, 67–77 (German, with English summary). MR 474884, DOI 10.1007/BF01419529 J. A. NITSCHE, "${L_\infty }$-convergence for finite element approximation," 2nd Conf. on Finite Elements (Rennes, France, May 12-14, 1975).
- Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937–958. MR 373325, DOI 10.1090/S0025-5718-1974-0373325-9
- Martin Schechter, On $L^{p}$ estimates and regularity. I, Amer. J. Math. 85 (1963), 1–13. MR 188615, DOI 10.2307/2373179
- Ridgway Scott, Optimal $L^{\infty }$ estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681–697. MR 436617, DOI 10.1090/S0025-5718-1976-0436617-2
- Gilbert Strang, Approximation in the finite element method, Numer. Math. 19 (1972), 81–98. MR 305547, DOI 10.1007/BF01395933 G. STRANG & G. FIX, "A Fourier analysis of the finite element variational method." (Unpublished manuscript.)
- Mary Fanett Wheeler, An optimal $L_{\infty }$ error estimate for Galerkin approximations to solutions of two-point boundary value problems, SIAM J. Numer. Anal. 10 (1973), 914–917. MR 343659, DOI 10.1137/0710077
Additional Information
- © Copyright 1977 American Mathematical Society
- Journal: Math. Comp. 31 (1977), 414-442
- MSC: Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1977-0431753-X
- MathSciNet review: 0431753