On maximal finite irreducible subgroups of $\textrm {GL}(n, \textbf {Z})$. I. The five and seven dimensional cases
HTML articles powered by AMS MathViewer
- by Wilhelm Plesken and Michael Pohst PDF
- Math. Comp. 31 (1977), 536-551 Request permission
Abstract:
General methods for the determination of maximal finite absolutely irreducible subgroups of $GL(n,{\mathbf {Z}})$ are described. For $n = 5,7$ all these groups are computed up to Z-equivalence.References
-
R. BÜLOW, Über Dadegruppen in $GL(5,{\mathbf {Z}})$, Dissertation, Aachen, 1973.
R. BÜLOW, J. NEUBÜSER & H. WONDRATSCHEK, "On crystallography in higher dimensions. I, II, III," Acta Cryst., v. A27, 1971, pp. 517-535.
- Richard Brauer, Über endliche lineare Gruppen von Primzahlgrad, Math. Ann. 169 (1967), 73–96 (German). MR 206088, DOI 10.1007/BF01399532
- R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. (2) 42 (1941), 556–590. MR 4042, DOI 10.2307/1968918
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- E. C. Dade, The maximal finite groups of $4\times 4$ integral matrices, Illinois J. Math. 9 (1965), 99–122. MR 170958
- Veikko Ennola, On the characters of the finite unitary groups, Ann. Acad. Sci. Fenn. Ser. A I No. 323 (1963), 35. MR 0156900
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2 H. MINKOWSKI, "Zur Theorie der positiven quadratischen Formen," Gesammelte Werke, Band 1, Chelsea, New York, 1958, pp. 212-218. W. PLESKEN, Beiträge zur Bestimmung der endlichen irreduziblen Untergruppen von $GL(n,{\mathbf {Z}})$ und ihrer ganzzahligen Darstellungen, Dissertation, Aachen, 1974.
- S. S. Ryškov, The maximal finite groups of integer $n\times n$ matrices, Dokl. Akad. Nauk SSSR 204 (1972), 561–564 (Russian). MR 0304501
- S. S. Ryškov, Maximal finite groups of $n\times n$ integral matrices and full integral automorphism groups of positive quadratic forms (Bravais types), Trudy Mat. Inst. Steklov. 128 (1972), 183–211, 261 (Russian). Collection of articles dedicated to Academician Ivan Matveevič Vinogradov on his eightieth birthday, II. MR 0344199
- David B. Wales, Finite linear groups in seven variables, Bull. Amer. Math. Soc. 74 (1968), 197–198. MR 218466, DOI 10.1090/S0002-9904-1968-11939-1 H. ZASSENHAUS, "Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen," Abh. Math. Sem. Univ. Hamburg, v. 12, 1938, pp. 276-288.
Additional Information
- © Copyright 1977 American Mathematical Society
- Journal: Math. Comp. 31 (1977), 536-551
- MSC: Primary 20G05
- DOI: https://doi.org/10.1090/S0025-5718-1977-0444789-X
- MathSciNet review: 0444789