Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On maximal finite irreducible subgroups of $\textrm {GL}(n, \textbf {Z})$. I. The five and seven dimensional cases
HTML articles powered by AMS MathViewer

by Wilhelm Plesken and Michael Pohst PDF
Math. Comp. 31 (1977), 536-551 Request permission

Abstract:

General methods for the determination of maximal finite absolutely irreducible subgroups of $GL(n,{\mathbf {Z}})$ are described. For $n = 5,7$ all these groups are computed up to Z-equivalence.
References
    R. BÜLOW, Über Dadegruppen in $GL(5,{\mathbf {Z}})$, Dissertation, Aachen, 1973. R. BÜLOW, J. NEUBÜSER & H. WONDRATSCHEK, "On crystallography in higher dimensions. I, II, III," Acta Cryst., v. A27, 1971, pp. 517-535.
  • Richard Brauer, Über endliche lineare Gruppen von Primzahlgrad, Math. Ann. 169 (1967), 73–96 (German). MR 206088, DOI 10.1007/BF01399532
  • R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. (2) 42 (1941), 556–590. MR 4042, DOI 10.2307/1968918
  • Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
  • E. C. Dade, The maximal finite groups of $4\times 4$ integral matrices, Illinois J. Math. 9 (1965), 99–122. MR 170958
  • Veikko Ennola, On the characters of the finite unitary groups, Ann. Acad. Sci. Fenn. Ser. A I No. 323 (1963), 35. MR 0156900
  • James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
  • H. MINKOWSKI, "Zur Theorie der positiven quadratischen Formen," Gesammelte Werke, Band 1, Chelsea, New York, 1958, pp. 212-218. W. PLESKEN, Beiträge zur Bestimmung der endlichen irreduziblen Untergruppen von $GL(n,{\mathbf {Z}})$ und ihrer ganzzahligen Darstellungen, Dissertation, Aachen, 1974.
  • S. S. Ryškov, The maximal finite groups of integer $n\times n$ matrices, Dokl. Akad. Nauk SSSR 204 (1972), 561–564 (Russian). MR 0304501
  • S. S. Ryškov, Maximal finite groups of $n\times n$ integral matrices and full integral automorphism groups of positive quadratic forms (Bravais types), Trudy Mat. Inst. Steklov. 128 (1972), 183–211, 261 (Russian). Collection of articles dedicated to Academician Ivan Matveevič Vinogradov on his eightieth birthday, II. MR 0344199
  • David B. Wales, Finite linear groups in seven variables, Bull. Amer. Math. Soc. 74 (1968), 197–198. MR 218466, DOI 10.1090/S0002-9904-1968-11939-1
  • H. ZASSENHAUS, "Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen," Abh. Math. Sem. Univ. Hamburg, v. 12, 1938, pp. 276-288.
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 20G05
  • Retrieve articles in all journals with MSC: 20G05
Additional Information
  • © Copyright 1977 American Mathematical Society
  • Journal: Math. Comp. 31 (1977), 536-551
  • MSC: Primary 20G05
  • DOI: https://doi.org/10.1090/S0025-5718-1977-0444789-X
  • MathSciNet review: 0444789