Computation of the Solution of $x^3 + Dy^3 = 1$

By H. C. Williams and R. Holte

Abstract. A computer technique for finding integer solutions of

$$x^3 + Dy^3 = 1$$

is described, and a table of all integer solutions of this equation for all positive $D \leq 50000$ is presented. Some theoretic results which describe certain values of D for which the equation has no nontrivial solution are also given.

1. Introduction. Let D be an integer which is not a perfect cube; let $K = \mathbb{Q}(\sqrt[3]{D})$, the field formed by adjoining $\sqrt[3]{D}$ to the rationals \mathbb{Q}; and let $e (> 1)$ be the fundamental unit of K. By a nontrivial solution of

$$(1) \\ x^3 + Dy^3 = 1,$$

we mean a pair of integers (e, f) such that e and f satisfy (1) and $ef \neq 0$. We say that (1) is solved when we have either found all its nontrivial solutions or we have shown that no nontrivial solutions of (1) exist. If (1) has a nontrivial solution, we say that D is admissible; otherwise, we say that D is inadmissible.

It has long been known that the solution of (1) can be obtained from the following theorem.

Theorem (Delone-Nagell [6], [7]). The equation (1) has at most one nontrivial solution. If (e, f) is such a solution, then $e + f\sqrt[3]{D}$ is either e or e^2, the latter case occurring only for $D = 19, 20, 28$.

By using this theorem, Williams and Zarnke [9] determined all nontrivial solutions of (1) for all D such that $1 < D \leq 15000$. The difficulty in using this theorem to solve (1) lies in the fact that the calculation of e is frequently very difficult and time consuming. The best algorithm for computing e, which is currently available, still seems to be that of Voronoi (see, for example, [4] and [2]); however, this algorithm is both intricate and lengthy. For example, when $D = 34607$, the number of iterations required to find e is 66931 and $e > 10^{32873}$.

There appear to be relatively few values of D which are admissible and, when a value of D is admissible, the corresponding e is usually quite small. Consequently, the best strategy for solving (1) would seem to consist of finding simpler techniques than the calculation of e for determining when D is inadmissible. The purpose of this paper is to develop some of these techniques. We also present an extended version of the table in [9] for all $D \leq 50000$. Finally, some theorems are given which can be used for showing that certain values of D are inadmissible.

Received September 16, 1976.

Copyright © 1977, American Mathematical Society
2. Some Criteria for Determining When D is Inadmissible. Since $x^3 + d_1 d_2 y^3 = x^3 + d_1 (d_2 y)^3$, we need only consider those values of D which have no perfect cube divisor; hence, we assume that $D = cd^2$, where c, d are square-free integers. We also let $D = 3^i AB$, where $0 \leq i \leq 2$, every prime divisor of A is congruent to -1 modulo 3, and every prime divisor of B is congruent to $+1$ modulo 3. Cohn [3] has shown that, if $D \neq 2, 9, 17, 20$, then D is inadmissible whenever $B = 1$. In what follows we will assume that $D \neq 2, 9, 17, 20$. The following simple result is also frequently useful.

Theorem. If $D \equiv \pm 4, \pm 3 \pmod{9}$ and $B > 1$, then D is inadmissible if no factor $(\neq 1)$ of B is of the form $1 + 9t$.

Proof. Suppose D is admissible and suppose (e, f) is the nontrivial solution of (1). Since $e^3 + Df^3 = 1$ and $e^3 \equiv 0, 1, -1, f^3 \equiv 0, 1, -1 \pmod{9}$, we must have $3 \mid f$. Since $e^2 + e + 1 \equiv 0 \pmod{9}$ and $(A, e^2 + e + 1) = 1$, we get $e \equiv 1 \pmod{9}$,

$$e^2 + e + 1 = 3B'g^3,$$

where $B' > 1$ and $B' \parallel B$. It follows that $B' \equiv 1 \pmod{9}$.

Let ρ be a primitive cube root of unity; let $Q(\rho)$ be the field formed by adjoining ρ to the rationals; let $Q[\rho]$ be the ring of integers in $Q(\rho)$; and let Z be the set of rational integers. Put $\lambda = 1 - \rho$ and, if $p (\equiv 1 \pmod{3})$ is any rational prime, define $\pi_p = a + b\rho$, $\overline{\pi}_p = a + b\rho^2$, where $a \equiv -1 \pmod{3}$, $3 \mid b$, and $p = N(\pi_p) = N(\overline{\pi}_p) = a^2 - ab + b^2$. If $P = p_1 p_2 \cdots p_j$, where $p_i (\equiv 1 \pmod{3})$ is prime for $i = 1, 2, \ldots, j$, we define $\Gamma(P) = \{\gamma \mid \gamma = \pi_1 \pi_2 \cdots \pi_m\}$ where $\pi_i = \pi_p$ or $\overline{\pi}_p$; and if $p_k = p_h$, then $\pi_k = \pi_h$. Thus, if there are l distinct prime factors of P, we have 2^l elements in $\Gamma(P)$.

With these conventions we can now give the following four theorems.

Theorem 1. Let $D = AB \equiv \pm 1 \pmod{9}$. If D is admissible, there must be a unitary* factor B_2 of B such that $B_2 > 1$ and either

$$\rho^2 \gamma r^3 + B_1 Ar^3 = \lambda$$

or

$$\gamma r^3 + 3p^2 \lambda B_1 Ar^3 = 1 \quad (B_2 \equiv 1 \pmod{9})$$

must have a solution where $\tau \in Q[\rho], r \in Z, B_1 = B/B_2, \gamma \in \Gamma(B_2)$.

Theorem 2. Let $D = AB \equiv \pm 1 \pmod{9}$. If D is admissible, there must be a unitary factor B_2 of B such that $B_2 > 1$ and either

$$\rho \gamma r^3 + B_1 Ar^3 = \lambda$$

or

$$\gamma r^3 + 3p^2 \lambda B_1 Ar^3 = 1 \quad (B_2 \equiv 1 \pmod{9})$$

must have a solution, where $\tau \in Q[\rho], r \in Z, B_1 = B/B_2, \gamma \in \Gamma(B_2)$.

Theorem 3. Let $D = 3AB$. If D is admissible, there must be a unitary factor B_2 of B such that $B_2 > 1$ and

*We say that m is a unitary factor of n if $(m, n/m) = 1$.
must have a solution, where $\tau \in \mathbb{Q}[\rho], \tau \in \mathbb{Z}, B_1 = B/B_2$, and $\gamma \in \Gamma(B_2)$.

Theorem 4. Let $D = 9AB$. If D is admissible, there must be a unitary factor B_2 of B such that $B_2 > 1, B_2 \not\equiv 4 \pmod{9}$, and

\[
\rho \gamma \tau^3 + \rho^2 \lambda AB_1 \tau^3 = 1 \quad (B_2 \equiv 7 \pmod{9}),
\]

\[
\rho^2 \gamma \tau^3 + \rho^2 \lambda AB_1 \tau^3 = 1 \quad (B_2 \equiv 1 \pmod{9})
\]

or

\[
\gamma \tau^3 + \rho^2 \lambda AB_1 \tau^3 = 1 \quad (B_2 \equiv 1 \pmod{9}),
\]

must have a solution, where $\tau \in \mathbb{Q}[\rho], \tau \in \mathbb{Z}, B_1 = B/B_2$, and $\gamma \in \Gamma(B_2)$.

Since the proofs of these four theorems are similar, we will prove Theorem 1 only.

Proof of Theorem 1. Suppose D is admissible and that $(e, /)$ is the nontrivial solution of (1). We divide the proof into two cases.

Case 1. $3 \nmid /$. Since $D \not\equiv \pm1 \pmod{9}$ and $3 \nmid /$, we must have $e \equiv -1 \pmod{3}$ and

\[
e - 1 = B_1 A \tau^3, \quad e^2 + e + 1 = B_2 t^3,
\]

where $r, t \in \mathbb{Z}, B_1 B_2 = B, (B_1, B_2) = 1$. Since $D \not\equiv 17, 20, \text{ we have } B_2 > 1$ (Ljunggren [5]).

In $\mathbb{Q}(\rho)$,

\[
(e - \rho)(e - \rho^2) = B_2 t^3;
\]

and it follows that $e - \rho = \beta \tau^3$, where $\beta = \rho' \gamma$ for some $\gamma \in \Gamma(B_2)$ and $\tau \in \mathbb{Q}[\rho]$.

Since $e \equiv -1, \gamma \equiv \pm1$, and $\tau^3 \equiv \pm1 \pmod{3}$, we must have $j = 2$. Since

\[
e = B_1 A \tau^3 + 1 \quad \text{and} \quad e = \rho^2 \gamma \tau^3 + \rho,
\]

we get (2).

Case 2. $3 \mid /$. In this case we have $e \equiv 1 \pmod{9}$ and

\[
e - 1 = 9B_1 A \tau^3, \quad e^2 + e + 1 = 3B_2 t^3.
\]

It follows that $e - \rho = \rho' \gamma \tau^3$, where $\tau \in \mathbb{Q}[\rho]$. Since $e \equiv 1 \pmod{9}$ and $\gamma \tau^3 \equiv \pm1 \pmod{3}$, we find that $j = 0$. It is now easy to deduce (3).

Let π be any prime of $\mathbb{Q}[\rho]$; and define the cubic character of $\nu \in \mathbb{Q}[\rho]$ by

\[
[v|\pi] = 1, \rho \text{ or } \rho^2
\]

when

\[\mu^{N(\pi)-1/3} \equiv 1, \rho \text{ or } \rho^2 \pmod{\pi},\]

respectively. Suppose, for example, that $D = AB \not\equiv \pm1 \pmod{9}$. If D is admissible, we must have some unitary factor B_2 of B such that $B_2 > 1$; and we must also have some $\gamma \in \Gamma(B_2)$ such that either (2) or (3) is solvable. If (2) is solvable,

\[
[t^3 \gamma^2 \rho \nu] = 1 \quad \text{for each prime } q \text{ which divides } A,
\]
COMPUTATION OF THE SOLUTION OF $x^3 + Dy^3 = 1$

(11) \[\frac{\lambda^2 \rho y}{\pi_p} = \left[\frac{\lambda^2 \rho y}{\pi_p} \right] = 1 \quad \text{for each rational prime } p \text{ which divides } B_1, \]

(12) \[\frac{\lambda^2 B_1 A}{\pi_i} = 1 \quad \text{for } i = 1, 2, 3, \ldots, m, \text{ where } \gamma = \pi_1 \pi_2 \cdots \pi_m. \]

If (3) is solvable,

(13) \[B_2 \equiv 1 \pmod{9}, \]

(14) \[\left[\frac{\gamma}{q} \right] = 1 \quad \text{for each prime } q \text{ which divides } A, \]

(15) \[\left[\frac{\gamma}{\pi_p} \right] = \left[\frac{\gamma}{\pi_p} \right] = 1 \quad \text{for each rational prime } p \text{ which divides } B_1, \]

(16) \[\left[\frac{3 \rho^2 \lambda B_1 A}{\pi_i} \right] = 1 \quad \text{for } i = 1, 2, 3, \ldots, m, \text{ where } \gamma = \pi_1 \pi_2 \cdots \pi_m. \]

If, for every possible unitary divisor $B_2 > 1$ of B there does not exist a value for γ such that either (10)–(12) or (13)–(16) are all true, then neither (2) nor (3) has a solution; thus, D is inadmissible.

Similar results can also be obtained from Theorems 2, 3 and 4.

3. Computer Algorithms. In order to make use of the results described above, we must have a method for evaluating $[v/\pi]$. To do this we use an algorithm analogous to that of Jacobi for evaluating the Legendre Symbol. To evaluate $[(A + B\rho)(C + D\rho)]$, where $A, B, C, D \in \mathbb{Z}$ and $3 \nmid C, 3 \mid D$, we first find $E + F\rho$, where $E = A - xC + yD$, $F = B - yC - xD + yD$.

<table>
<thead>
<tr>
<th>D</th>
<th>e</th>
<th>f</th>
<th>D</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>422</td>
<td>-15</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>-1</td>
<td>511</td>
<td>8</td>
<td>-1</td>
</tr>
<tr>
<td>9</td>
<td>-2</td>
<td>1</td>
<td>513</td>
<td>-8</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>-7</td>
<td>614</td>
<td>17</td>
<td>-2</td>
</tr>
<tr>
<td>19</td>
<td>-8</td>
<td>3</td>
<td>635</td>
<td>361</td>
<td>-42</td>
</tr>
<tr>
<td>20</td>
<td>-19</td>
<td>7</td>
<td>651</td>
<td>-26</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>-3</td>
<td>1</td>
<td>728</td>
<td>9</td>
<td>-1</td>
</tr>
<tr>
<td>28</td>
<td>-3</td>
<td>1</td>
<td>730</td>
<td>-9</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>10</td>
<td>-3</td>
<td>813</td>
<td>28</td>
<td>-3</td>
</tr>
<tr>
<td>43</td>
<td>-7</td>
<td>2</td>
<td>999</td>
<td>10</td>
<td>-1</td>
</tr>
<tr>
<td>63</td>
<td>4</td>
<td>-1</td>
<td>1001</td>
<td>-10</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>-4</td>
<td>1</td>
<td>1330</td>
<td>11</td>
<td>-1</td>
</tr>
<tr>
<td>91</td>
<td>9</td>
<td>-2</td>
<td>1332</td>
<td>-11</td>
<td>1</td>
</tr>
<tr>
<td>124</td>
<td>5</td>
<td>-1</td>
<td>1521</td>
<td>-23</td>
<td>2</td>
</tr>
<tr>
<td>126</td>
<td>-5</td>
<td>1</td>
<td>1588</td>
<td>-35</td>
<td>3</td>
</tr>
<tr>
<td>182</td>
<td>-17</td>
<td>3</td>
<td>1657</td>
<td>-71</td>
<td>6</td>
</tr>
<tr>
<td>215</td>
<td>6</td>
<td>-1</td>
<td>1727</td>
<td>12</td>
<td>-1</td>
</tr>
<tr>
<td>217</td>
<td>-6</td>
<td>1</td>
<td>1729</td>
<td>-12</td>
<td>1</td>
</tr>
<tr>
<td>254</td>
<td>19</td>
<td>-3</td>
<td>1801</td>
<td>73</td>
<td>-6</td>
</tr>
<tr>
<td>342</td>
<td>7</td>
<td>-1</td>
<td>1876</td>
<td>37</td>
<td>-3</td>
</tr>
<tr>
<td>344</td>
<td>-7</td>
<td>1</td>
<td>1953</td>
<td>25</td>
<td>-2</td>
</tr>
</tbody>
</table>
Table 1 (Continued)

<table>
<thead>
<tr>
<th>D</th>
<th>e</th>
<th>f</th>
<th>D</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>2196</td>
<td>13</td>
<td>-1</td>
<td>17145</td>
<td>361</td>
<td>-14</td>
</tr>
<tr>
<td>2198</td>
<td>-13</td>
<td>1</td>
<td>17575</td>
<td>26</td>
<td>-1</td>
</tr>
<tr>
<td>2743</td>
<td>14</td>
<td>-1</td>
<td>17577</td>
<td>-26</td>
<td>1</td>
</tr>
<tr>
<td>2745</td>
<td>-14</td>
<td>1</td>
<td>18745</td>
<td>1036</td>
<td>-39</td>
</tr>
<tr>
<td>3155</td>
<td>-44</td>
<td>3</td>
<td>18963</td>
<td>-80</td>
<td>3</td>
</tr>
<tr>
<td>3374</td>
<td>15</td>
<td>-1</td>
<td>19441</td>
<td>-242</td>
<td>9</td>
</tr>
<tr>
<td>3376</td>
<td>-15</td>
<td>1</td>
<td>19682</td>
<td>27</td>
<td>-1</td>
</tr>
<tr>
<td>3605</td>
<td>46</td>
<td>-3</td>
<td>19684</td>
<td>-27</td>
<td>1</td>
</tr>
<tr>
<td>3724</td>
<td>-31</td>
<td>2</td>
<td>19927</td>
<td>244</td>
<td>-9</td>
</tr>
<tr>
<td>3907</td>
<td>-63</td>
<td>4</td>
<td>20421</td>
<td>82</td>
<td>-3</td>
</tr>
<tr>
<td>4095</td>
<td>16</td>
<td>-1</td>
<td>20797</td>
<td>-55</td>
<td>2</td>
</tr>
<tr>
<td>4097</td>
<td>-16</td>
<td>1</td>
<td>21951</td>
<td>28</td>
<td>-1</td>
</tr>
<tr>
<td>4291</td>
<td>65</td>
<td>-4</td>
<td>21953</td>
<td>-28</td>
<td>1</td>
</tr>
<tr>
<td>4492</td>
<td>33</td>
<td>-2</td>
<td>23149</td>
<td>57</td>
<td>-2</td>
</tr>
<tr>
<td>4912</td>
<td>17</td>
<td>-1</td>
<td>24388</td>
<td>29</td>
<td>-1</td>
</tr>
<tr>
<td>4914</td>
<td>-17</td>
<td>1</td>
<td>24390</td>
<td>-29</td>
<td>1</td>
</tr>
<tr>
<td>5080</td>
<td>361</td>
<td>-21</td>
<td>26110</td>
<td>-89</td>
<td>3</td>
</tr>
<tr>
<td>5514</td>
<td>-53</td>
<td>3</td>
<td>26999</td>
<td>30</td>
<td>-1</td>
</tr>
<tr>
<td>5831</td>
<td>18</td>
<td>-1</td>
<td>27001</td>
<td>-30</td>
<td>1</td>
</tr>
<tr>
<td>5833</td>
<td>-18</td>
<td>1</td>
<td>27910</td>
<td>91</td>
<td>-3</td>
</tr>
<tr>
<td>6162</td>
<td>55</td>
<td>-3</td>
<td>29790</td>
<td>31</td>
<td>-1</td>
</tr>
<tr>
<td>6858</td>
<td>19</td>
<td>-1</td>
<td>29792</td>
<td>-31</td>
<td>1</td>
</tr>
<tr>
<td>6860</td>
<td>-19</td>
<td>1</td>
<td>31256</td>
<td>-63</td>
<td>2</td>
</tr>
<tr>
<td>7415</td>
<td>-39</td>
<td>2</td>
<td>32006</td>
<td>-127</td>
<td>4</td>
</tr>
<tr>
<td>7999</td>
<td>20</td>
<td>-1</td>
<td>32042</td>
<td>667</td>
<td>-21</td>
</tr>
<tr>
<td>8001</td>
<td>-20</td>
<td>1</td>
<td>32767</td>
<td>32</td>
<td>-1</td>
</tr>
<tr>
<td>8615</td>
<td>41</td>
<td>-2</td>
<td>32769</td>
<td>-32</td>
<td>1</td>
</tr>
<tr>
<td>8827</td>
<td>-62</td>
<td>3</td>
<td>33542</td>
<td>129</td>
<td>-4</td>
</tr>
<tr>
<td>9260</td>
<td>21</td>
<td>-1</td>
<td>34328</td>
<td>65</td>
<td>-2</td>
</tr>
<tr>
<td>9262</td>
<td>-21</td>
<td>1</td>
<td>34859</td>
<td>-98</td>
<td>3</td>
</tr>
<tr>
<td>9709</td>
<td>64</td>
<td>-3</td>
<td>35936</td>
<td>33</td>
<td>-1</td>
</tr>
<tr>
<td>10647</td>
<td>22</td>
<td>-1</td>
<td>35938</td>
<td>-33</td>
<td>1</td>
</tr>
<tr>
<td>10649</td>
<td>-22</td>
<td>1</td>
<td>37037</td>
<td>100</td>
<td>-3</td>
</tr>
<tr>
<td>12166</td>
<td>23</td>
<td>-1</td>
<td>39303</td>
<td>34</td>
<td>-1</td>
</tr>
<tr>
<td>12168</td>
<td>-23</td>
<td>1</td>
<td>39305</td>
<td>-34</td>
<td>1</td>
</tr>
<tr>
<td>12978</td>
<td>-47</td>
<td>2</td>
<td>42874</td>
<td>35</td>
<td>-1</td>
</tr>
<tr>
<td>13256</td>
<td>-71</td>
<td>3</td>
<td>42876</td>
<td>-35</td>
<td>1</td>
</tr>
<tr>
<td>13538</td>
<td>-143</td>
<td>6</td>
<td>44739</td>
<td>-71</td>
<td>2</td>
</tr>
<tr>
<td>13823</td>
<td>24</td>
<td>-1</td>
<td>45372</td>
<td>-107</td>
<td>3</td>
</tr>
<tr>
<td>13825</td>
<td>-24</td>
<td>1</td>
<td>46011</td>
<td>-215</td>
<td>6</td>
</tr>
<tr>
<td>14114</td>
<td>145</td>
<td>-6</td>
<td>46655</td>
<td>36</td>
<td>-1</td>
</tr>
<tr>
<td>14408</td>
<td>73</td>
<td>-3</td>
<td>46657</td>
<td>-36</td>
<td>1</td>
</tr>
<tr>
<td>14706</td>
<td>49</td>
<td>-2</td>
<td>47307</td>
<td>217</td>
<td>-6</td>
</tr>
<tr>
<td>15253</td>
<td>-124</td>
<td>5</td>
<td>47964</td>
<td>109</td>
<td>-3</td>
</tr>
<tr>
<td>15624</td>
<td>25</td>
<td>-1</td>
<td>48627</td>
<td>73</td>
<td>-2</td>
</tr>
<tr>
<td>15626</td>
<td>-25</td>
<td>1</td>
<td>48949</td>
<td>4097</td>
<td>-112</td>
</tr>
<tr>
<td>16003</td>
<td>126</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
x = N e \left(\frac{AC + BD - AD}{C^2 - CD + D^2} \right), \quad y = N e \left(\frac{BC - AD}{C^2 - CD + D^2} \right),
\]

and, by \(N e(\alpha) \) (\(\alpha \) real), we denote the nearest rational integer to \(\alpha \).

If \(E \equiv -F \pmod{3} \), divide \(E + F\rho \) by \(1 - \rho \) \(m \) times until

\[
\frac{E + F\rho}{(1 - \rho)^m} = \bar{E} + \bar{F}\rho,
\]
where $E \neq -F \pmod{3}$. This can be easily done by using the result that, if $E = -F + 3Q$, then $(E + Fp)/(1 - p) = 2Q - F + Qp$.

If $3 \mid F$, put $n = 0$, $G = E$, $H = F$;
if $3 \mid E$, put $n = 1$, $G = F - E$, $H = -E$; and
if $3 \nmid EF$, put $n = 2$, $G = -F$, $H = E - F$.

We have
\[
\begin{pmatrix} A + Bp \\ C + Dp \end{pmatrix} = \rho^{(2m+n)(c^2-1)/3-nCD/3} \begin{pmatrix} C + Dp \\ G + Hp \end{pmatrix}.
\]

We now apply the algorithm again to $[(C + Dp)(G + Hp)]$. Since $N(G + Hp) < N(C + Dp)$, we can repeat this process until we ultimately get a symbol of the form ± 1. The accumulated power of ρ will give us the value of $[(A + Bp)(C + Dp)]$. By using well-known results concerning the symbol $[\nu|\pi]$ (see, for example, Bachmann [1]), it is a simple matter to verify that if $C + Dp$ is a prime in $Q(\rho)$, then this algorithm gives the cubic character of $A + Bp$ modulo $C + Dp$.

A computer program was written, which used the results of Section 2 in conjunction with the above algorithm, in order to solve (1). For any given value of $D = cd^2$, the program first attempted to prove that D is inadmissible; if this failed, the program used the algorithm of Voronoi to determine the fundamental unit
\[
e = (u + v\sqrt{D} + w\sqrt{D^2})/t \quad (u, v, w, t \in Z)
\]
of K, where u, v, w, t were calculated modulo a large prime R (see [9]). If either v or w were zero modulo R, the program recalculated u, v, w, t exactly. If, at this stage, the solution of either $x^3 + cd^2y^3 = 1$ or $x^3 + c^2dy^3 = 1$ was discovered, the computer printed the solution and the appropriate D value.

This program was run on all values of D of the form cd^2, where c, d are square-free, $c > d$, and $15000 < D < 50000$. Over 89% of the D values considered are inadmissible by the criteria of Section 2 only. In Table 1 above we present all the non-trivial solutions of (1) for every D such that $1 < D < 50000$.

4. Some Theoretical Results. When B is a single prime or the square of a prime, we can obtain some results concerning the inadmissibility of D which are similar to results of Sylvester and Selmer (see Selmer [8, Chapter 9]) concerning $x^3 + y^3 = Dz^3$.

In what follows we denote by p a rational prime of the form $3r + 1$ and we denote by $(n | p)_3$ ($n \in Z$), the least positive residue of $n^{(p-1)/3}$ (mod p). Note that $(n | p)_3 = 1$ if and only if $[n|\pi] = 1$, where $\pi = \pi_p$ or $\pi_{\overline{p}}$.

Theorem 5. If $D = p^kA$ ($k = 1$ or 2), $D \equiv \pm 1 \pmod{9}$, then D is inadmissible if either
\[
(q | p)_3 \neq 1 \quad \text{for some prime divisor } q \text{ of } A
\]
or
\[
p \neq \pm 1 \pmod{9} \quad \text{and} \quad (3 | p)_3 = 1.
\]

Theorem 6. If $D = p^kA$ ($k = 1$ or 2), $D \equiv \pm 1 \pmod{9}$, then D is admissible if either
Theorem 7. If \(D = 3p^kA \) (\(k = 1 \) or \(2 \)), then \(D \) is inadmissible if either

\[
p \not\equiv 1 \pmod{9};
\]
or

\[
p \equiv 1 \pmod{9}, \quad (3 \mid p)_3 \neq 1;
\]
or

\[
p \equiv 1 \pmod{9}, \quad (3 \mid p)_3 = 1 \quad \text{and} \quad (q \mid p)_3 \neq 1
\]
for some prime divisor \(q \) of \(A \).

Theorem 8. If \(D = 9p^kA \) (\(k = 1 \) or \(2 \)), then \(D \) is inadmissible if

\[
p^k \equiv 4 \pmod{9};
\]
or

\[
p^k \equiv 7 \pmod{9}, \quad A \equiv \pm 4 \pmod{9}, \quad (3 \mid p)_3 \neq 1;
\]
or

\[
p^k \equiv 7 \pmod{9}, \quad A \neq \pm 4 \pmod{9}, \quad (3q \mid p)_3 \neq 1
\]
for some prime of \(q \mid A \), where \(j = -(q + 1)(4A^2 - 1)/9 \pmod{3} \).

Since the proofs of these theorems are similar, we give here the proof of Theorem 6 only.

Proof of Theorem 6. From Theorem 2 we see that if (1) has a nontrivial solution, we must have either

(\(\alpha \)) \([\lambda^2A\mid\pi] = 1 \) and \([\rho^2\lambda^2\pi^k\mid q] = 1 \) for each prime \(q \mid A \) or \(p \equiv 1 \pmod{9} \) and

(\(\beta \)) \([3\rho^2\lambda A\mid\pi] = 1 \) and \([\pi\mid q] = 1 \) for each prime \(q \mid A \), where \(\pi = \pi_p \) or \(\bar{\pi}_p \).

If (\(\alpha \)) is true, we see that

\[
\left[\frac{\rho^2\pi^k}{q} \right] = \left[\frac{\rho^2\pi^k}{q} \right] = 1;
\]
consequently,

\[
\left[\frac{q}{\pi} \right] = \rho^{k(q^2 - 1)/3}
\]
for each prime \(q \mid A \), and it follows that \([A\mid\pi] = \rho^{k(A^2 - 1)/3}\). Since \(p^kA \equiv \pm 1 \pmod{9} \), we have \((A^2 - 1)/3 \equiv \kappa(p - 1)/3 \pmod{3} \) and \([A\mid\pi] = \rho^{(p-1)/3}\). From the fact that \([\lambda^2A\mid\pi] = 1\), we get \([3\mid\pi] = \rho^{(p-1)/3} \); hence \([3q\mid\pi] = \rho^{k(q+1)/3+\kappa(p-1)/3} \).
If \(p \not\equiv 1 \pmod{9} \), then \(D \) is inadmissible if \((3 | p)_3 = 1 \) or if \((3 | q | p)_3 \neq 1 \) for some prime \(q | A \) when \(j = -\kappa(p - 1)(q + 1)/9 \pmod{3} \).

If \((\beta) \) is true, we must have \((p | q)_3 = 1 \) for each prime \(q | A \). Thus, if \(p \equiv 1 \pmod{9} \), \((3 | p)_3 \neq 1 \) and \((p | q)_3 \neq 1 \) for some prime \(q | A \), then neither \((\alpha) \) nor \((\beta) \) is true.

With these results it is frequently possible to determine the inadmissibility of a value of \(D \) of the form \(3^l p^m A \) by using a table of indices only. For example, if \(D = 95545 = 5 \cdot 97 \cdot 197 \), we have \(p = 97 \) and \(p \not\equiv 1 \pmod{9} \). Also \((3 | p)_3 \neq 1 \), \(\varepsilon = 0 \), and \((197 | 97)_3 \neq 1 \); hence, 95545 is inadmissible.

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba R3T 2N2, Canada