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Computation of the Regular

Continued Fraction for Euler's Constant

By Richard P. Brent

Abstract.  We describe a computation of the first 20,000 partial quotients in the regular

continued fractions for Euler's constant 7 = 0.577 . . . and exp(7) = 1.781 ....   A

preliminary step was the calculation of 7 and exp(7) to 20,700D.   It follows from the

continued fractions that, if 7 or exp(7) is of the form P/Q for integers P and Q, then

\Q\> in1««««.

1. Introduction.  The regular continued fraction of a real number jc is a (pos-

sibly terminating) continued fraction of the form

x = q0 + i/(qx +l/(q2 +•••)).

where the q. are integers called "partial quotients", and q¡ > 0 if i > 0.  We define

relatively prime integers Pn and ß„ > 0 by

PjQn = <?0 + 1/(?1  + l/(?2  + * * * + 1/(1  + 1/?J •■•))•

If necessary to avoid confusion, we write q¡(x) instead of q{, etc.

Since it is not known whether Euler's constant 7 = 0.577 ... is rational or ir-

rational, there is considerable interest in computing as many terms as possible in its

regular continued fraction.  We describe a computation of the partial quotients qx(j),

q2(y), ■ ■ . , cz20000(7), and give various statistics concerning them.

Euler [12] suggested that G = exp(7) could be a more natural constant than 7.

Thus, we also computed qx(G), . . . , <72oooo(^)-  A preliminary step was the compu-

tation of 7 and G to 20700 decimal places.  These decimal values of 7 and G, along

with the partial quotients q¡(y) and q¡(G) for i < 20000, have been deposited in the

UMT file of this journal.

2. Historical Background.   Early computations of 7 were performed by Euler,

Mascheroni, and others:   see Glaisher [13].  Adams [1] computed 7 to 263 places,

and this result was not improved for 74 years until Wrench [20] extended the compu-

tation to 328 places, and then Knuth [16] computed 1271 places.  Adams, Wrench,

and Knuth used the Euler-Maclaurin summation formula applied to the harmonic series,

and Knuth found that the computation of the Bernoulli numbers required in the
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Euler-Maclaurin formula was the most time-consuming part of the calculation.

Sweeney [19] suggested a method which avoided the need for any Bernoulli

numbers, and used it to find 7 to 3566 places.  Sweeney's method is described in

Section 3 below.  Beyer and Waterman [3] used Sweeney's method to obtain a 7114

place value [4].  However, only the first 4879 places of Beyer and Waterman's value

are correct. The error was detected when comparing the continued fraction obtained

from their 7114D value with that obtained from a 10488D value computed as de-

scribed below. Beyer and Waterman have now corrected their result [5].

3.  Computation of 7.  The method used was suggested by Sweeney [19], and

depends on the identity

(1) 7 = S(n) - R(n) - ln(n),

where

nk(-Xf-i
(2) S(ri) = Z

k=i        k*

exp(-u) exp(-n)r°° expt   ui cAui — rti   _

(3) R(n) = fn  -a_¿ du ~ -SL-L Z  *!(-«>n:\ri

k=0

and n is a positive integer.  Using Stirling's approximation, we have

(4)

and

(5)

exp(-n) n-2
F(n)- Z  *!(-«)

' k=0

< 3 exp(- 2n)

Ian) nk(-if-i
S(n)~  Z

k=o        k*
< exp(- 2n),

where a = 4.3191 ... is the positive root of a + 2 = aln(a).  Thus, to obtain 7 to

d decimal places, we took n — xhd • ln(10) and used (1), (4) and (5).  Because of

cancellation when accumulating the sum in (5), it was necessary to use up to 3cf/2

floating decimal places in the working to obtain d places in Sin).  However, about

d/2 floating decimal places were sufficient when approximating R(n).

The method used by Sweeney [19] and Beyer and Waterman [3]-[5] was

simpler but more time-consuming:   they took n — d • ln(10), so R(n) could be neglect-

ed entirely, but it was necessary to use about 2<i floating decimal places to compen-

sate for cancellation.

Our computation of 7 was performed using a floating-point multiple-precision

package [9] on Univac 1108 and 1100/42 computers.  The sums in (4) and (5) were

accumulated in the obvious way, so the number of arithmetic operations required

was 0(d2).  The computation was repeated with several different n and various choices

of base (b) in the multiple-precision routines.  Details are given in Table 1.  The

21014D computation required about 28 hours of computer time.

As noted above, Beyer and Waterman's value [4] is correct to only 4879D. Pro-

fessor Beyer attributes this to a machine error which occurred during his computation
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Table 1

Computations of 7

decimal places id)                                 n in (1) base (b)

5074                 5851 5000

10488                 12083 3400

20800                23955 2360

21014                24204 65536

of ln(2).  In such a long computation the probability of a machine error occurring

may be quite high.  Our first attempt to compute 7 to 21014D gave an incorrect re-

sult, apparently because of a machine error.  (See also [10], [11].)  However, the

computations summarized in Table 1 gave consistent results, so we are confident that

7 is known to at least 20800D.

4. Computation of exp(7).   Using our 20800D value of 7, we computed

exp(2~1517) using the Taylor series for exp(jc), and then

(6) G = exp(7) = (exp(2-lsl7))2151.

The constant 151 was chosen to approximately minimize the computation time [6],

[9].

To verify the result, we read in the computed (decimal) value of G, and comput-

ed ln(G) by the Gauss-Salamin algorithm [2], [7], with b = 10000.  The computed

ln(G) agreed with 7 to 20800D.

5. Computation of Regular Continued Fractions.  The method used was similar

to that suggested by Lehmer [17] and Wrench and Shanks [21].  Lehmer's idea great-

ly reduces the number of multiple-precision divisions required, and the computer time

used in the continued fraction computations was less than 10 percent of the time used

to compute 7 and G.

Our program kept track of the loss of significance at each stage of the continued

fraction computation, and stopped when no more partial quotients could be guaran-

teed.  Thus, we obtained 17,(7), . . . , <72oi36(?) and <li(G)> • • • . QioimiG) from

the 20800D values of 7 and G.   From a theorem of Levy [14], [15], [18], we had

anticipated obtaining about 20800(6 ■ ln(2)ln(10)/ïï2) =* 20181 partial quotients.

To verify the results, we read in <72oi36(j)> • • • , Q\(l) and computed

•P20136(7) and ß2oi36(7) usm8 tne 0DVi0US recurrence relations.  A multiple-precision

division then gave a value which agreed with 7 to 20794D.  (The loss of 6D was be-

cause the stopping criterion in our continued fraction program was rather conservative.)

Similarly for q20lsl(G), . . . , qx(G).
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Table 2

Distribution of first 20,000 partial quotients for y and G

number of
<7,-(7) = n

number of
Qi(G) = n

expected
number

1

2

3

4

5

6

7

8

9

10

11-20

21-50

51-100

101-1000

>1000

8355

3334

1869

1178

821

604

461

347

288

247

1128

787

279

266

36

8238

3371

1896

1218

827

597

480

363

312

226

1178

762

269

234

29

8300.7

3398.5

1862.2

1177.9

812.8

594.9

454.4

358.4

290.0

239.5

1168.3

782.0

276.0

255.5

28.8

6.  Statistics.   Table 2 gives the distribution of the partial quotients qx(x),

. . . , q20QQ0(x) for jc = 7 and G.  From a well-known theorem of Gauss and Kusmin

[15], the frequency of occurrence of a partial quotient n in the regular continued

fraction of almost all real numbers jc is

/„ = log2(l + 1/n) - log2(l + l/(n + 1)).

The last column in Table 2 gives the distribution of quotients expected from the

Gauss-Kusmin theorem.  A chi-squared test did not show any significant difference

(at the 5% level) between the actual and expected distributions.

In Table 3 we list all the "large" quotients found, i.e. all q¡(x) > 2000 for jc =

y oi G and i < 20000.  The only surprising entry is q4294(G) = 1568705.
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Table 3

Large partial quotients

t 9/(7) qfG)

528

5040

7341

8176

8770

9255

9424

9534

9550

13095

14821

15346

15847

15901

17025

18267

19519

19844

2076

11626

4252

8892

2135

3725

5542

3055

2180

3292

4133

12156

2714

2039

9776

4455

4941

3229

715

1825

2216

4294

8120

8501

9022

10616

11572

14782

16224

16790

17944

18667

19617

2294

2138

2259

1568705

10012

5314

9794

6329

3227

2128

4679

2975

2489

2569

2529

Let ¿„(jc) = ln(ß„(jc))/n and K„(x) = (qx(x) . . . qn(x))l'n.  From theorems of

Levy [14], [15], [18] and Khintchine [15],

lim LJx) =-—
„_.. nW  12 • ln(2)

= 1.186569

and

lim Kn(x) = exp( Z fj HÍ) ) = 2.685452 . . .
n->°° V=2      /

for almost all x.  In Table 4 we give ¿„(7). Ln(G), Kn(y) and Kn(G) for various n <

20000.
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Table 4

Levy and Khintchine statistics

¿„(7) K(G) K„(y) Kn(G)

100

1000

2000

5000

10000

20000

1.0910

1.2107

1.2027

1.1741

1.1845

1.1891

1.1129

1.1724

1.2024

1.1911

1.1912

1.1851

2.3938

2.7591

2.7321

2.6390

2.6771

2.6908

2.4935

2.6587

2.7491

2.7060

2.7047

2.6843

7.  Consequences.  Let x = y or G.   From Theorem 17 of [15], \Qnx -Pn\ <

- P\ for all integers P and Q with 0 < \Q\ < Qn.  Using qx, . . . , <72oooo> weIßJC

find Ô20ooo(7) = 5.6 . . 1010328
and ö20ooo(G) = 3.3 ... x 10

10293 Hence,

we have the following result, which makes it highly unlikely that 7 or G is rational.

Theorem.  If y or G = P/Q for integers P and Q, then \Q\> 1010000.
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