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On the Stability of Galerkin Methods

for Initial-Boundary Value Problems

for Hyperbolic Systems

By Max D. Gunzburger*

Abstract.   The stability of approximating the solution of mixed initial-boundary value

problems for hyperbolic systems by semidiscrete Galerkin methods is studied.   It is

shown that a particular straightforward Galerkin method yields an unstable approxi-

mation, and that this numerical instability is caused by an improper treatment of the

boundary.   Stable schemes are then presented, one of which differs from the unstable

scheme only insofar as the treatment of the boundary is concerned.   These stable

schemes make use of a particular matrix which symmetrizes the differential system.

It is therefore shown that the use of this matrix is crucial to the stability of the

computations as well as for obtaining a priori bounds on the energy of the contin-

uous system.   This symmetrizing matrix is also related to the diagonalizing matrix for

the system of hyperbolic equations and to the Lyapunov matrix for the system of

ordinary differential equations resulting from the application of Galerkin's method.

I.   Introduction.   In recent years there have appeared a few articles, e.g., [1],

[2], [3], and [8], considering Galerkin methods for hyperbolic systems of partial

differential equations.  These are mostly concerned with obtaining a priori error esti-

mates, often of optimal order, by functional analytic methods.  The present work is

concerned with the stability of semidiscrete Galerkin methods for initial-boundary

value problems for hyperbolic systems and differs from the above references in both

motivation and spirit.

Dupont [4] recently introduced the use of a symmetrizing matrix in connection

with a particular hyperbolic system.   This matrix was an essential ingredient in the

derivation of a priori error estimates.   In the present work it is shown that this sym-

metrizing matrix is also an essential ingredient for the computation of stable Galerkin

solutions.  Three Galerkin schemes are considered, only two of which are stable.  The

essential connection between the symmetrizing matrix and stability is clearly evident

through the use of matrix theory.  Connection is also made between the symmetrizing

matrix and two matrices often encountered in the literature.  The first is the diagonal-

izing matrix which transforms a given hyperbolic system into an equivalent system

for characteristic variables. The second is the Lyapunov matrix encountered in the

Lyapunov stability theory for the ordinary differential equations resulting from the use of
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Galerkin's method in space.   In addition, an indication of the physical interpretation

of the role of the symmetrizing matrix is provided.

In this work the word stable is used in two contexts.  The first usage is common

to both the continuous solution and its discrete approximation, and is concerned with

stability in time.  By definition, stability in time means that the solution is bounded

as t —*■ °°.  The second usage is in the sense of convergence of the numerical approxi-

mation, i.e., as the dimension of the approximating space becomes infinite, the approxi-

mate solution converges to the continuous one. (In finite element type approximations,

the dimension of the approximating space becoming infinite is equivalent to the grid

size going to zero.)  The latter usage in this work is referred to simply as stability,

while stability in time will always be indicated as such.  Because we wish to differen-

tiate between these two types of stability we consider below problems whose contin-

uous solutions are bounded in time so that any unbounded growth in the approximate

solution is clearly an instability of the numerical method.

II.  The Continuous Problem.   In this section the model /--dimensional system

with constant coefficients

(2.1) ut=Aux,      t>0,0<x<\,

is considered.  The time rate of change of the l? energy E2 is given by

(2-2) d E2/dt = K(u, "), = («, Aux),

where the usual inner product

i"' u) =JouTvdx

is used.   In general, (2.2) gives no a priori information about how the energy behaves

in time.   Specifically, it cannot be deduced from (2.2) whether or not the energy is

bounded by the initial energy.   For example, take

(2-3) A = (V     \      u = (Ul,u2)T,

and the boundary data

(2.4) «i(f. 0) = «,(?, 0 = 0,

where v < 1 is a constant.  Then, after integration by parts, (2.2) becomes

(a, u)t = v[u\(t, \)-u\(t, 0)]

which yields no a priori information since not even the sign of the right-hand side is

known before the solution u is obtained.

The possibility exists of defining the energy in a different norm.  Dupont [4]

used such a norm in order to derive a priori error estimates for a particular hyperbolic

system of two equations, and it is shown below that the use of this norm is also

crucial to the stability of the actual computations.
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For a given positive definite symmetric constant matrix E, the E energy is defined

to be

EE = Vz(«, Eu)

so that from (2.1)

(2.5) dEE/dt = iu,EAux).

If the system (2.1) is hyperbolic, then there exists a real nonsingular matrix Q such

that QAQ~l = A, where A is a diagonal matrix whose diagonal entries are the eigen-

values A- of A.  Then it is well known (see Taussky [7]) that there exists a symmetric

positive definite matrix E that symmetrizes A, i.e., EA = ATE.  We now wish to relate

E to Q, and ascertain the freedom available in choosing E.  Consequently we assume,

without loss of generality, that Q is chosen so that the entries of A are ordered, i.e.,

Xj > X2 ^ ' ' " ^ \-  Multiple eigenvalues are then grouped together, and it is easy

to verify that

(2.6) iQTT1EQ-1=D    or   E = QTDQ,

where D is a symmetric positive definite block diagonal matrix whose rth block has

dimension equal to the multiplicity of that eigenvalue of A which appears in the corre-

sponding position in A.  Other than the above restrictions, the nonzero entries of D

are arbitrary.

Now, substituting (2.6) into (2.5) yields

(2.7) dEE/dt =foiwTDAwx)dx = V2WTit, x)DAw(t, x)|£œ0,

where w = Qu, the vector of characteristic dependent variables for the system (2.1).

With the X's ordered as above, they are also ordered so that Xx, . . . , Xp are

positive and X +,,..., Xr are negative.  Then A, D, and w can be partitioned in the

following manner

A
ijAj = diag(X,, . . . ,\p),

(A2 = -diag(Xp + 1, . . . ,Xr),

D=[ , w

where wx and w2 are vectors of dimension p and q = r - p, respectively.  Then (2.7)

can be written as

(2.8) -~ = Kiw\DxAxwx - wT2D2A2w2)\x=Q.

Furthermore, well-posed linear homogeneous boundary data can always be written as

(2.9) w2(t, 0) = S2wxit, 0),      wxit, 1) = Sxw2it, 1),

where Sx and S2 are matrices of dimension q x p and p x q, respectively.  The data
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(2.9) is chosen to be homogeneous so that the solution of the system (2.1) is driven

by the initial data. In addition, Sx and S2 are restricted below so that the E energy

is bounded by the initial E energy.  Substituting into (2.8) yields

dEF
2 IF = W2(í' 1} [5íDiAi5i ~D2A2]w2it, 1)•r7"'

(2.10)

+ w\(t, OM-DjAj + S^D2A2S2]wx(t, 0).

If the E energy is to be conserved, i.e., dEE/dt = 0 for any wx and w2 then

necessarily

(2.11) S\DXAXSX -D2A2 = 0   and   SÎD2A2S2 ~DXAX = 0.

Since D'x  and A'x  commute, as do D2 and A2, letting

*! = iDxAxt    and    d>2 = (£>2A2)1/2

in (2.11) yields

{ff>lSl%l)T<<f>iSlV?) = I   and    (^S^f^S^1) = I,

which implies that

where Vx and F2 are p x q and ¿7 x p matrices, respectively, both of which have

orthonormal columns.   Assume now that p <q.  The orthonormality of the columns

of Vx then implies that there are q vectors of dimension p < q which are linearly in-

dependent.  Therefore, p > q.  However, a similar consideration for V2 shows that

q > p so that p = q.  The matrices Vx and V2 are therefore square orthogonal matrices,

which, along with the positivity of <t>x and <t>2, imply that Sx and S2 are nonsingular.

To summarize, for the general homogeneous boundary data (2.9) the E energy is

conserved only if: (1) A has an equal number of positive and negative eigenvalues,

which trivially implies that; (2) A must be of even dimension; and (3) the matrices

Sj and S2, which are square and of dimension (r/2), must be expressible as

Sx =<t>-x1Vx<£2    and    S2=^1V2<i>1,

where <I>1 and <ï>2 are arbitrary block diagonal symmetric positive definite matrices

(whose block structure is that of Dx and D2, respectively), and Vx and V2 are or-

thogonal matrices of dimension (r/2); which also implies that (4) Sx and 52 are non-

singular.  In particular, if the eigenvalues of A are distinct, then D and therefore Dx,

D2, 4>j and 4>2 are diagonal matrices.

For r = 2, the above conditions imply that the scalars Sx and S2 are not zero

and in fact IS,^! = 1.  Then, choosing <p2 = l^^j will result in the conservation of

E energy.   For general dimension r, the boundary matrices Sx and S2 and coefficient

matrices A for which the above four conditions are satisfied form a very restricted

set.  We consider next when the E energy is bounded by the initial E energy, i.e.

(2-12) dEE/dt<0.
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Then, from (2.10) the matrices

(2.13) iSlDxAxSx-D2A2)   and    iS\D2A2S2 ~DXAX)

must be negative semidefinite if (2.12) is to hold for all wx and w2.  General condi-

tions on A, 5j and S2 for which Dx and D2 exist such that (2.13) are negative semi-

definite is an open question.  However, a few cases can be easily analyzed.

First, consider the pure "supersonic" case in which p = 0 and q = r.  Then

(2.9) and (2.10) reduce to

w2(t, 0) = 0    and    dEE/dt = -xhw[it, \)D2A2w2(t, 1),

respectively, since the dimension of wx is zero.  Then for any positive diagonal matrix

D2, (2.12) holds.  Of course, this is a special case of prescribing purely characteristic

data, i.e., Sx = S2 = 0 for which any arbitrary positive diagonal matrices Dx and D2

will yield (2.12).  Of more interest is when the data at x = 1 is characteristic but the

data at x =- 0 is not, i.e., Sx = 0 but 52 =£ 0.  In this case only the second matrix

of (2.13) need be examined and by choosing the elements of Dx large enough and the

elements of D2 small enough, (2.12) can be satisfied.

We observe that whenever Dx and D2 are arbitrary, as in two of the cases above,

then the role of the E matrix is purely that of a symmetrizer.  Then if A itself is

symmetric, Q can be chosen to be orthogonal, i.e., QQT = / so that choosing D = I

yields E = I.  A further observation is that if any characteristic data is prescribed,

say at x = 1, then Sx is singular; and therefore, the E energy cannot be conserved.

If the E energy can be bounded by the initial E energy,

(u, Eu)<iu,Eu) \t=Q,

then the E matrix can be used to obtain a priori bounds on the L2 energy since with

E positive definite

(2.14) («, Eu)/Xmax < (u, u) < (u, #/)/Xmin,

where Xmin and Xmax are the minimum and maximum eigenvalues of E, respectively.

In order to indicate what is the physical meaning of the E energy, consider the

special case of A given by (2.3) and the boundary data (2.4).  Then, with

KIT)
the E energy is conserved, i.e.,

(2.15) I(M, Eu)t = \ £{l [u\ - 2vuxu2 + u\\ dx = 0

which can be rewritten

(2'16) Mo 2 [(1 " *** + ("2 - ™i)2] dx = °-

Now let
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(2.17) «, = «//f/(l - v2)'h    and    u2 = [$t + (v2 - l)*x]/(l - ^2)'/2.

Substituting (2.17) in the system, (2.1) with A given by (2.3) yields:

(2.18) *« + 2"*„+^„-*,, = 0,

which is a Galilean transformation of the wave equation.  Then, from (2.18)

= ^Jo 2 [(*')2 + ° " "2>^)21 dx + "^f)2|o + ("* - DW,lS.

Using (2.4) and (2.17) to evaluate the boundary contributions yields

(2.19) ^ i[(V/f)2 + (1 - p2Mx)2) dx = 0.

Again using (2.17), it is obvious that (2.16) and (2.19) are identical.   Therefore the

E energy for the system (2.1) is the usual energy for (2.18).

III.  Approximate Solution by Semidiscrete Galerkin Methods.   Define the weak

solution of the system (2.1) as that u which satisfies

(3.1) (ut-Aux,v) = 0

for all v in an appropriate test space and define the weak solution in the E inner

product as that u which satisfies

(3.2a) (ut-Aux,Ev) = 0.

Since E is symmetric, this is equivalent to

(3.2b) (Eut-EAux,v) = 0.

Therefore, the effect of the symmetrizing matrix E may be interpreted as either

changing the trial function from v to Ev or as premultiplying the system (2.1).

An approximate solution for u is to be found by the use of Galerkin's method.

The method is presented for the case of (2.1) consisting of two equations, i.e.,

(3.3) A = [ )>      « = ("i "2)  •
\a2 1      fl22/

The generalization to higher dimensions is discussed below. In addition, u is assumed

to satisfy the boundary data (2.4). This particular set of boundary data is chosen so

that the E energy is conserved which is accomplished by choosing

(e\\    e\i\        ei2 =-oa22/ax2,

J,      e22 = o,

ex2    e22J       exx=o(a\2-a22axx+a2xax2)/a\2,

where a is a positive constant and then



GALERKIN METHODS 667

(3.4)

This clearly marks any unbounded growth in the numerical solution to be an instability

of the numerical method.   For more general boundary data, the system (2.1) can have

exponentially growing solutions and still be well posed (in the sense of Kreiss [6] ).

This makes it difficult to separate growths due to instabilities of the numerical scheme

from those which are due to the time instability of the continuous solution.  A further

reason for choosing the data (2.4) is that it will adequately display some of the pit-

falls encountered in applying Galerkin's method to the system (2.1).  In particular, the

important role of the matrix E in the computational method will be evident.

First, it is assumed that u can be approximated by

/«?\   » AM
(3-5) u" = = £ kW,

\«2/      >=°\Cjit)/

where the basis functions 0.(jc) are chosen (without loss of generality) so that

0/0) = 0,   / * 0    and    0/1) = 0,   / * n.

Then the boundary data (2.4) yields that

b0(t) = bn(t) = 0;

and therefore, the unknowns are £y (/ = 1, . . . , n - 1) and c.- (/ = 0, . . . , ri) which

number 2n in total.  Initial data is prescribed for ux and u2.  Then initial data for all

b: and Cj can be deduced by solving the interpolation problem resulting from evaluat-

ing (3.5) at t = 0.

The expression (3.5) is substituted into (3.1) so that uH is required to satisfy

(3-6) iuh -Aux,v") = 0

for all vH in a suitable trial space.  An obvious choice for v" is that it lie in that sub-

space of the approximating space used to approximate u (in (3.5)) for which

vx(x = 0) = vxix = 1) = 0.   Such a space, of dimension 2n, is spanned by the vectors

(3.7) I   U¡,      /= 1,...,«-1,       Í   )#,,      1=0, ...,n.

Choosing (3.7) for vh and then substituting in (3.6) yields the following 2« ordinary

differential equations for 2« unknowns

n

Z \-bjmij + ia\\bj + a\2cj)kij\ ~ °>      / = 1, . . - , « - 1,
;=0

n

Z   \.éimlj + ia2\bj + a22c/)fc//]  = °-        / = 0, . . . , «,
/=0

where • indicates differentiation with respect to time and where
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(3-8) mij=J0  <t>jix)<l>i(x)dx   and    ktj =JQ 0j(x)0,O)dx.

Since ¿0 and ¿>n are known, they may be separated from the summations to yield a

square system.   Let

U= (b1, . . . , bn_x,c0, . . . ,cn)T,

(3.9) _/M,     0\        _/Kt    K3\

\0    M2) \k4   kJ

where

Mx = (nig),      Kx = fln(*,y),      /, / = 1.M - 1,

M2 = (m//)>       K2 ~ a22Íklj)<       j,l = 0, . . . ,n,

K3 = a12(A:z/),      / = 0, ...,«,/= 1, ...,«- 1,

A:4 = a2x(klj),     j = 1,. . . , n - 1, / = 0, . . . ,n.

Then the system (3.7) may be written in matrix notation as

(3.10) MÜ = KU.

The matrix M is clearly symmetric since m¡, = m¡.  For the special case of

symmetric A, K is almost skew symmetric. In fact, since by integrating by parts

ktj = -kfl + 0,(1)0,(1) - 0,(0)0,(0),

it is clear that

kjj = -k¡¡,      l¥=j,l,j = 0, ... ,n,

(3.11)
kjj = Q, i = 1.n- 1,

so that (with aX2 = a2x) K4 = ~K3, Kx is skew symmetric and K4 is skew symmetric

except for the two nonzero diagonal entries (a22&00) and ia22knn).  Then K itself is

skew symmetric except for the two nonzero diagonal elements of K4.

For the system (3.10), the stability in time is determined by the eigenvalues X

of

(3.12) \My=Ky.

The eigenvalues of (3.12) were computed for the special case of A given by

(2.3) where the basis functions <pXx) were chosen to be cubic 5-splines on a uniform

mesh.   Computations were performed for various values of n ranging from 5 to 100.

The computational results show that:

1. The eigenvalues of K have zero real part.

2. (2« - 4) eigenvalues of (3.12) have zero real part, 2 have negative real part,

and 2 have positive real part.
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3.  If h is the mesh size, then the real parts of the eigenvalues with positive real

part grow as \/h as ft tends to zero.

From this it can be concluded that the solution of (3.10) will grow as exp {nt/h}

as t increases, where k is a positive constant.  This growth is clearly an instability of

the numerical scheme since the continuous solution is bounded in time due to its

conserved E energy and (2.14).  Also, note that as h tends to zero, the instability in

time is intensified.

Since these computational results indicate that for a representative approximation

space the obvious Galerkin scheme considered above yields an unstable (in time)

approximation to the solution of (2.1), this scheme is now abandoned.  However, be-

fore proceeding to a different scheme, there are a few observations to be made.

First, the reason that the above scheme is unstable is the manner in which the

boundary is being treated.  This is made clear by observing that the right-hand side of

(3.13)       K(UTMU)t = UT(K + KT)U = a22 [k00c2it) + knnc2nit)}

involves terms which are affected by the boundary.   In fact, from (3.5) one immedi-

ately deduces that

c0it) ä u2it, O)/0O(O)   and    cn(t) « u2(U)/0„(l)

so that c0 and cn are clearly boundary terms.

A second observation is to note that the scheme considered in this section is

stable in time for the wave equation.   In fact, whenever al2 = a2l and a22 =0,

K4 = 0 so that K is skew symmetric.  Then from (3.13) the M energy is bounded by

the initial M energy, i.e. iUTMU)t = 0.   Therefore, so long as \\M\\ and ||A/"-1|l are

bounded as h tends to zero (which is shown in the Appendix), the method discussed

in this section is stable for a22 = 0 and the boundary data (2.4).  (The norm ||-|| is

assumed to be the Euclidean norm.)

IV.  The Galerkin Scheme Using the E Matrix.  As was pointed out in Section

III, the role of the E matrix in the search for weak solutions of (2.1) may be in-

terpreted in two ways.  Of course, this dual role extends to the role of E in the Gal-

erkin approximation.  Therefore, after approximating u by (3.5), one may choose vh

as in Section HI and substitute into (3.2b) or alternately one may choose {Evh} to

be the trial space and substitute into (3.2a).  The trial space {Evh} is spanned by

(4-0       (   "W*),      /=1,...,«-1,    (W),      1 = 0, ...,n.
\eX2l \e22l

Choosing either approach again results in a system of ordinary differential equations

which may be written in matrix notation as

(4-2) MÙ = KU,

where
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fM,    MA /*,    XA

W[   M2/ \-j^    0/

Mj = ej jim,,),      Â^ = a(^,;),      /, / = 1, . . . , n - 1,

M2 = e22imlf),     j, I = 0, . . . , n,

M3 = el2imlj),      K3 = ßiklf),     / = 0.n, I = 1.n - 1,

where a and (3 are defined in (3.4).  Clearly M is symmetric and, using (3.11), K is

skew symmetric.  Note that the symmetry of E is necessary for M to be symmetric,

and that K is skew symmetric because EA is symmetric and has a zero element in the

lower right-hand corner (see (3.4)).  This shows how the properties of E enter into the

matrices appearing in the differential system (4.2).  The fact that E is positive definite

is used in the Appendix to show that M is also positive definite.

The discrete M energy of the solution of the system (4.2) is conserved since

ilFMU)t = UT(K +KT)U=0,

due to the skew symmetry of K.  Therefore, if \\M\\ and ||M_1|I are bounded as the

dimension of the approximating space becomes infinite, then the approximation U to

« is a stable one.  The question of bounding ||M|| and ||Af—* || is discussed in the

Appendix.

It is interesting to note that when M is symmetric and positive definite and K

is skew symmetric, then the eigenvalues X of

(4.3) XMy = Ky

are pure imaginary since X is also an eigenvalue of M~VlKM~Vl which is a skew sym-

metric matrix.

The Galerkin method presented in this section therefore yields a stable approxi-

mation U to the solution u of (2.1).   It is important to note that the E matrix plays

a crucial role in this method, as it did in obtaining bounds on the continuous energy.

From the results concerning the method presented in Section III, it is seen that it is

essential that the E matrix be used in the computations.

The matrix M, and therefore E, is intimately related to the Lyapunov stability

theory for the system of ordinary differential equations (4.2).    In the Lyapunov

theory, one seeks a positive definite symmetric matrix H such that in the H norm,

the energy can be bounded.   In fact, for the system (4.2), which results from impos-

ing the homogeneous boundary data (2.4), one actually seeks an H such that the H

energy is conserved.  This leads to the matrix problem

HiM~lK) + (KTM-l)H = 0,

which obviously has the solution H = M.  Therefore, the matrix M is precisely the

Lyapunov matrix for the system (4.2).

The Galerkin method presented above suffers from the serious drawback that M
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is considerably less sparse than M.  Even if the unknowns are reordered so that the

c;'s and bfs interleave, the bandwidth of M will be double that of M.  This drawback

is greatly alleviated by the method considered below.

The Galerkin Scheme Using E at the Boundary.  Consider the trial space spanned

by

W),   Í Vo),   /= i,...,«-i,

(4.4)

MJ0,(jt),      / = 0 and n.
V22/

Clearly, the vectors (4.4) also span {Evh} and therefore may be used instead of (4.1)

in (3.2a).  However, note that for / =é 0 and / # n, the basis vectors (4.4) are identical

to those used in Section III.

Choosing (4.4) as the trial space leads to the system

(4-5) MU=KU,

where

W3  mJ \ka kJ

Mi=imij)>    Ki=auikij)>    /,/= i,...,«-i,

K3 = ax2iklj),      I = 1, . . . , n - \,j = 0, . . . , n,

M2 = ('"//).      K2 = a22ik,j),     l,j = 0, ...,n,

-       / £l \ ~
K2=K2-  —Q— )K2,      e, =(1,0,... , 0), e„ + 1 = (0, . . . , 0, 1),

Vn + l/

M3= — (O),
e
22 W        ?,• - moj, r\j = m„/; / = 1, ...,«- 1,

^4 = a21(*//)'      / = 0, . . . , n, / = 1, . . . , « - 1,

/í\       Í = ($i> • • ■ .ln-i).ñ = Ö?i> • • • ,7?„_i)>
^4=^4+(^22-«2l)     0   i

W £/ = *0/» »î/ = knj>J =   1, ...,«- I-

The associated generalized eigenvalue problem is
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(4-7) \My = Ky,

where now M is not symmetric and K is not skew symmetric.

The basis vectors (4.4) are a linear combination of the basis vectors (4.1) and

the system (4.5) is a linear combination of the system (4.2).  This observation makes

it easy to define the symmetric matrix

(4.8) R =

where

3^l_ellAj-l>        ^2 ~ e22^n+l'        ^

and where 7;- and 0;- are the identity matrix and zero vector of dimension /, respectively.

Then

(4.9) M = RM   and    K = RK

so that R simultaneously symmetrizes M and skew symmetrizes K.  By multiplying

(4.7) on the left by R, (4.3) is recovered so that the eigenvalues of (4.7) are identical

to those of (4.3).  Therefore, the eigenvalues of (4.7) have zero real part.

The question of stability can be answered in the affirmative if a norm can be

found in which the energy is conserved.  That norm exists and is the M norm intro-

duced above since

(UTMU\ = UT(MM~lK + KTMT-1M)U

= UT(RMM^K + KTMT-1MTRT)U= UTiK + KT)U = 0.

This also shows that the Lyapunov matrix for the system (4.5) is again M.

The role of E is, therefore, crucial to the computation only at the boundary;

and E need be applied only there.  This last Galerkin method is identical to the un-

stable method presented in Section III except for the treatment of the boundary, so

once again it is evident that the stability of the Galerkin scheme is dependent on a

correct treatment of the boundary.  This is also clear from observing that the basis

vectors (3.7) are not linear combinations of (4.1) as are the basis vectors (4.4).   A

further observation is that the matrix M is only slightly less sparse than M.  In fact,

M and M are identical except for the nth and 2nth rows.  On the other hand, M has

approximately twice as many nonzero entries as does M.

The final step in proving the stability of either of the Galerkin schemes con-

sidered in this section is the bounding of ||A/|| and ||M_1|I-  This question is consid-

ered in the Appendix.

The mechanical construction of the above numerical methods extend in a

straightforward manner from two to higher dimensions.   In addition, the generaliza-

tion to the general  boundary data (2.9) is also easily accomplished, especially if the
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system (2.1) is transformed to the diagonal (or characteristic) form wt = Awx before

the Galerkin methods are applied.   However, the above stability analysis does not gen-

eralize so easily, especially when the E energy is not conserved but is merely bounded

by the initial E energy.  Part of the difficulty is finding an M norm for which, as the

case may be, the discrete M energy is conserved or is bounded by the initial M energy.

This difficulty is analogous to the search for the corresponding E matrix in the con-

tinuous problem.  An additional difficulty in the case of the E energy being merely

bounded is that since the search for the M matrix is aimed at bounding the M energy

by its initial value, the Lyapunov matrix H is now required to make H(M~lK) +

(KTM~l)H negative semidefinite.  This, of course, is not a trivial extension of the

analysis of Sections HI and IV.   However, the rather specialized example treated in

those sections clearly shows how essential the proper treatment of the boundary is to

the stability of Galerkin solutions of hyperbolic systems.

Appendix-Properties of the Matrices M, M and M.  In Section IV it was required

that ||Af || and \\M~X1| be bounded.  This problem for M can be reduced to the equiv-

alent problem for M as follows.   From (4.9), M = RM.   Furthermore, by comparing

(3.9) and (4.6) it is clear that M and M have the same eigenvalues; and therefore, M

is positive definite.   In fact

M = PMP-1,

where

"—rM'-.

Then

and

M = RPMP~X    and   M~x = PM~XP~XR-X

so that

(A.1)      IIMIKIIAIIIIT'IIIIÂ/IIIIP-1!!    and    UM"1!! < \\P\\ \\M~X\\ \\P-X\\ \\R~X\

First, consider the symmetric matrix

\w    wwT + in+x/

whose eigenvalues Xp are

twice,

\ = r([2 + s2 ±± s\A2 + 4 ] 12,      in - 1) times,
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where s = -ex x/e22.   These eigenvalues are independent of n and are bounded from

above and below by positive constants which are independent of n.  Hence,

(A.2) l|/,lll|/,-1ll<C1,

where Cx does not depend on n.

Next consider the symmetric matrix R which is defined by (4.8). The 2n eigen-

values XR of R can easily be shown to be

!1, twice,

eigenvalues of E,      (n - 1) times.

Since E is positive definite, so is R.  Since both R and M are positive definite, then so

is M.   Furthermore, the eigenvalues of R are bounded from above and below by

positive constants which are independent of n.   Since R is symmetric, this implies that

(A.3) \\R\\<C2    and    m~H<C3,

where C3 and C4 do not depend on n.   Note that the positive definiteness of E is

necessary for R, and therefore M, to be positive definite.

Substituting (A.2) and (A.3) into (A.l) yields

(A.4) PÍ||<C4P#||    and    W~H<CsW~lh

where C4 = CXC2 and Cs = CXC3 are positive constants independent of n. There-

fore, the problem of bounding \\M\\ and \\M~X || has been reduced to bounding \\M\\

and ||Af-1||, respectively.

The matrix M is defined by (3.9); and therefore, ||Af || will depend on the choice

of interpolating space. If the 0.'s are orthonormal, then M = I so that \\M\\ = \\M~X \\

= I; and trivially these norms are bounded by constants independent of n.

The Galerkin approximation can be accomplished by the use of finite elements.

Then typically the basis functions <pAx) are polynomials with compact support which

in turn results in the Gram matrices Mx and M2 being banded.   Furthermore, Mx and

M2 can be assembled from element mass matrices.   Following Fried [5], it can be

shown that

ÀmaxW<X^max     and     XminW > ^min -

where jumax and umin are the largest and smallest eigenvalues of the element mass ma-

trices, respectively, and s is the maximum number of nonzero elements in a row of M.

In general, s is independent of n. The elements of M are proportional to n ~ 1/n, the

measure of the grid size. However, this h scales the whole matrix M (and also M and M)

and dividing equations such as (3.10), (4.2), and (4.5) by h scales the K matrices by 1/n.

This does not affect any of the results of Sections III and IV, but does make umax and

wmin independent of n, and therefore Xmax and Xmin can be bounded from above

and below, respectively, by positive constants which are independent of n.  Then since

M is symmetric, ||Af|| and ||M_1|I are bounded by positive constants which are inde-

pendent of n, and then by (A.4), the same is true for ||Af|| and ||A/_1||.
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