# Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

## Roots of two transcendental equations determining the frequency spectra of standing spherical electromagnetic wavesHTML articles powered by AMS MathViewer

by Robert L. Pexton and Arno D. Steiger
Math. Comp. 31 (1977), 1000-1002 Request permission

## Abstract:

Roots of the transcendental equations $\frac {{{j_l}(\lambda )}}{{{y_l}(\lambda )}} = \frac {{{j_l}(\alpha \lambda )\frac {{{i_{l - 1}}(\alpha \lambda \sqrt {|\varepsilon |} )}}{{{i_l}(\alpha \lambda \sqrt {|\varepsilon |} }} - \frac {1}{{\sqrt {|\varepsilon |} }}{j_{l - 1}}(\alpha \lambda )}}{{{y_l}(\alpha \lambda )\frac {{{i_{l - 1}}(\alpha \lambda \sqrt {|\varepsilon |} )}}{{{i_l}(\alpha \lambda \sqrt {|\varepsilon |} }} - \frac {1}{{\sqrt {|\varepsilon |} }}{y_{l - 1}}(\alpha \lambda )}}$ and $\frac {{\eta {j_{l - 1}}(\eta ) - l{j_l}(\eta )}}{{\eta {y_{l - 1}}(\eta ) - l{y_l}(\eta )}} = \frac {{\frac {{|\varepsilon |}}{{1 + |\varepsilon |}}\alpha \eta {j_{l - 1}}(\alpha \eta ) - l{j_l}(\alpha \eta ) + \frac {{\sqrt {|\varepsilon |} }}{{1 + |\varepsilon |}}\alpha \eta {j_l}(\alpha \eta )\frac {{{i_{l - 1}}(\alpha \eta \sqrt {|\varepsilon |)} }}{{{i_l}(\alpha \eta \sqrt {|\varepsilon |)} }}}}{{\frac {{|\varepsilon |}}{{1 + |\varepsilon |}}\alpha \eta {y_{l - 1}}(\alpha \eta ) - l{y_l}(\alpha \eta ) + \frac {{\sqrt {|\varepsilon |} }}{{1 + |\varepsilon |}}\alpha \eta {y_l}(\alpha \eta )\frac {{{i_{l - 1}}(\alpha \eta \sqrt {|\varepsilon |)} }}{{{i_l}(\alpha \eta \sqrt {|\varepsilon |)} }}}}$ for the spherical Bessel functions of the first and second kind, ${j_l}(x)$ and ${y_l}(x)$, and for the modified spherical Bessel functions of the first kind, ${i_l}(x)$, have been computed. The ranges for the parameters $\sqrt {|\varepsilon |}$ and $\alpha$, the order l and the root index n are: $\sqrt {|\varepsilon |} = 1.0,10.0,100.0,500.0;\quad \alpha = 0.1(0.1)0.7;\quad l = 1(1)15;\quad n = 1(1)30.$
Similar Articles
• Retrieve articles in Mathematics of Computation with MSC: 65A05
• Retrieve articles in all journals with MSC: 65A05