On the $l^{2}$ convergence of an algorithm for solving finite element equations
HTML articles powered by AMS MathViewer
- by R. A. Nicolaides PDF
- Math. Comp. 31 (1977), 892-906 Request permission
Abstract:
An iterative method of multiple grid type is proposed for solving general finite element systems. It is proved that the method can produce a solution to the equations in $O(N)$ arithmetical operations where N is the number of unknowns.References
- N. S. Bahvalov, Convergence of a relaxation method under natural constraints on an elliptic operator, Ž. Vyčisl. Mat i Mat. Fiz. 6 (1966), 861–883 (Russian). MR 215538 P. G. CIARLET & P. A. RAVIART, La Methode des Eléments Finis Pour les Problèmes aux Limites Elliptiques, Chap. 1, Univ. Paris VI, Lab. Analyse Numerique, 1974.
- R. P. Fedorenko, On the speed of convergence of an iteration process, Ž. Vyčisl. Mat i Mat. Fiz. 4 (1964), 559–564 (Russian). MR 182163
- Lydia Kronsjö, A note on the “nested iterations” methods, Nordisk Tidskr. Informationsbehandling (BIT) 15 (1975), no. 1, 107–110. MR 502089, DOI 10.1007/bf01933003
- S. G. Mikhlin, The numerical performance of variational methods, Wolters-Noordhoff Publishing, Groningen, 1971. Translated from the Russian by R. S. Anderssen. MR 0278506
- R. A. Nicolaides, On multiple grid and related techniques for solving discrete elliptic systems, J. Comput. Phys. 19 (1975), no. 4, 418–431. MR 413541, DOI 10.1016/0021-9991(75)90072-8
- R. A. Nicolaides, On the observed rate of convergence of an iterative method applied to a model elliptic difference equation, Math. Comp. 32 (1978), no. 141, 127–133. MR 458932, DOI 10.1090/S0025-5718-1978-0458932-0
Additional Information
- © Copyright 1977 American Mathematical Society
- Journal: Math. Comp. 31 (1977), 892-906
- MSC: Primary 65J05; Secondary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1977-0488722-3
- MathSciNet review: 0488722