Details of the first region of integers with
Authors:
Carter Bays and Richard H. Hudson
Journal:
Math. Comp. 32 (1978), 571-576
MSC:
Primary 10-04; Secondary 10H20
DOI:
https://doi.org/10.1090/S0025-5718-1978-0476616-X
MathSciNet review:
0476616
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Since the time of Chebyshev [4] there has been interest in the magnitude of the smallest integer x with , where
denotes the number of positive primes
and
. The authors have recently reached this threshold with the discovery that
. This paper includes a detailed numerical and graphical description of values of
in the vicinity of this long sought number.
- [1] Carter Bays and Richard H. Hudson, On the fluctuations of Littlewood for primes of the form 4𝑛̸=1, Math. Comp. 32 (1978), no. 141, 281–286. MR 476615, https://doi.org/10.1090/S0025-5718-1978-0476615-8
- [2] Carter Bays and Richard H. Hudson, Numerical and graphical description of all axis crossing regions for the moduli 4 and 8 which occur before 10¹², Internat. J. Math. Math. Sci. 2 (1979), no. 1, 111–119. MR 529694, https://doi.org/10.1155/S0161171279000119
- [3] Jan Bohman, On the number of primes less than a given limit, Nordisk Tidskr. Informationsbehandling (BIT) 12 (1972), 576–578. MR 321890, https://doi.org/10.1007/bf01932967
- [4]
P. L. CHEBYSHEV, "Lettre de M. le Professeur Tchébychev à M. Fuss sur un noveaux théorème rélatif aux nombres premiers contenus dans les formes
et
," Bull. Cl. Phys. Acad. Imp. Sci., v. 11, 1853, p. 208.
- [5] A. E. Ingham, The distribution of prime numbers, Cambridge Tracts in Mathematics and Mathematical Physics, No. 30, Stechert-Hafner, Inc., New York, 1964. MR 0184920
- [6] S. Knapowski and P. Turán, Further developments in the comparative prime-number theory. I, Acta Arith. 9 (1964), 23–40. MR 162771, https://doi.org/10.4064/aa-9-1-23-40
- [7] John Leech, Note on the distribution of prime numbers, J. London Math. Soc. 32 (1957), 56–58. MR 83001, https://doi.org/10.1112/jlms/s1-32.1.56
- [8] R. Sherman Lehman, On the difference 𝜋(𝑥)-𝑙𝑖(𝑥), Acta Arith. 11 (1966), 397–410. MR 202686, https://doi.org/10.4064/aa-11-4-397-410
- [9 J] E. LITTLEWOOD, "Sur la distribution des nombres premiers," Comptes Rendus, v. 158, 1914, pp. 1869-1872.
- [10] Daniel Shanks, Quadratic residues and the distribution of primes, Math. Tables Aids Comput. 13 (1959), 272–284. MR 108470, https://doi.org/10.1090/S0025-5718-1959-0108470-8
Retrieve articles in Mathematics of Computation with MSC: 10-04, 10H20
Retrieve articles in all journals with MSC: 10-04, 10H20
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1978-0476616-X
Article copyright:
© Copyright 1978
American Mathematical Society