Some extremal $2$-bases
HTML articles powered by AMS MathViewer
- by J. Riddell and C. Chan PDF
- Math. Comp. 32 (1978), 630-634 Request permission
Abstract:
By means of a computer search, some extremal additive bases have been constructed which have heretofore been unknown.References
- Walter Klotz, Eine obere Schranke für die Reichweite einer Extremalbasis zweiter Ordnung, J. Reine Angew. Math. 238 (1969), 161–168 (German). MR 246848, DOI 10.1515/crll.1969.238.161
- L. Moser, On the representation of $1,\,2,\cdots ,n$ by sums, Acta Arith. 6 (1960), 11–13. MR 122800, DOI 10.4064/aa-6-1-11-13
- L. Moser, J. R. Pounder, and J. Riddell, On the cardinality of $h$-bases for $n$, J. London Math. Soc. 44 (1969), 397–407. MR 238798, DOI 10.1112/jlms/s1-44.1.397 J. RIDDELL, On Bases for Sets of Integers, Master’s Thesis, University of Alberta, 1960.
- Hans Rohrbach, Ein Beitrag zur additiven Zahlentheorie, Math. Z. 42 (1937), no. 1, 1–30 (German). MR 1545658, DOI 10.1007/BF01160061
- Alfred Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. I, II, J. Reine Angew. Math. 194 (1955), 40–65, 111–140 (German). MR 75228, DOI 10.1515/crll.1955.194.40
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Math. Comp. 32 (1978), 630-634
- MSC: Primary 10L05
- DOI: https://doi.org/10.1090/S0025-5718-1978-0476685-7
- MathSciNet review: 0476685