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Computation of the 2-Rank of Pure Cubic Fields

By H. Eisenbeis, G. Frey and B. Ommerborn

Abstract.   For k£ Z\{o} there is a close connection between a certain subgroup of the

2 3
Selmer group of the elliptic curve given by: y    = x    + k, and the group of elements

of order 2 of the class group Cl(fc) of Q(^fc) denoted by Cl2(fc) (cf. (4]).   In the fol-

lowing paper we give some consequences of this fact, that make the computation of

Cl2(k) considerably easier.   For k < 10 000 we compute Cl2(fc) by methods developed

in [2], and by using [1) we get the structure of the 2-primary part of Cl(fc) with the

exception of 39 cases.

1.  Introduction and Notation. Let k ¥= 0 be a rational integer. Then Ak denotes

the elliptic curve, given over Q by the equation:  y2 = x3 + k.   From now on we as-

sume that no nontrivial cube divides k.   Let Cl(k) be the class group of Q($k),

Cl2(k):= Cl(k)/2C\(k). We want to compute Cl2(k) with the method described in [2].

If K is an overfield of Q (e.g. the algebraic closure Q of Q), then Ak(K) is the

group of A'-rational points of Ak; If M is any abelian group, then M2 are the elements

of order 2 of M

For a prime p (resp. p) of K (resp. Q) F?(Qp)is the completion of K (Q) with

respect to the normalized valuation v  (v ) given by p (p); if "Ç is a prime of K (i.e.

the algebraic closure of K) dividing p, then G   is the decomposition group of "$

(G9 = {aEG(K/K),a3=W-

In our theory we are only interested in nonarchimedean primes.  If L/K is a

Galois extension with Galois group G and M is a G-module, then H'(G, M) denotes the

fth (Täte-) cohomology group.  If L = K, then H\K, M):= H^K/K), M).

For any prime p of K we have the following commutative diagram with exact

rows:

0 — Ak(K)/2Ak(K) -^ HX(K, Ak(K)2) -*► HX(K, Ak(K))2 -» 0

[af i0p hp

0 -^ Ak(Kv)/2Ak(Kv) ^Hx(Kv,Ak(Kv)2) ^ Hx(Kp,Ak(K,))2 — 0

Definition.

W(K, Ak)2:= O ker jv, p prime of K,

(elements of order 2 in the Täte-Safare vie group),
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S(K,Ak)2.= <Tx(W(K,Ak)2)

= {a G HX(K, Ak(K)2); 0„(a) G im(5p) Vp}.

(Selmer group for 2).

In [4] we found a close connection between S(Ak2, Q)2 and Ç\2(k).  In the following

paper we want to give a correction of Satz 4 of [4] (Theorem 1) and some easy con-

sequences of Theorem 1 (Section 2) that make the computation of C\2(k) considerably

easier.  Using these results, we computed C\2(k) for k < 10 000 (Section 3) by meth-

ods developed in [2].

We want to thank the staff of the Rechenzentrum der Universität des Saarlandes

for its kind help during the computations.

2.  We first give a correction of Satz 4 of [4].

Let f be a cube root of unity, K:= Q(f, $k), G(K/Q) s S3 = <a, t> with a2 =

1, o($k) = $k, and t3 = 1, TtJ) = f.

Definition.  K'/K is an admissible extension iff either K' = K or

(i) F'/Q is a Galois extension,

(ii)  C7(F'/F) = Z/2 x Z/2.

(iii)  There are generators e,, e2 of G(K'/K) such that

r(e,) = e2; a(e,) = e,;

<e2) = e,e2;      ff(e2) = eie2-

To any admissible K'/K we can associate exactly one element of HX(Q, Ak2(Q)2) in

the following way:

If A:' = K, then K'/K ^06 HX(Q, Ak2(Q)2).

If [K' :K] = 4, then K'/K ►—► a, where res^a) is given by:

fXe,) = (-^k2, 0),      a(e2) = (-fv'fr*, 0)   (K' is a splitting field of a)

(cf. [4]).

Definition.   S'0 = {a G HX(Q, Ak2(Q)2), ex corresponds to an admissible F'/A',

and F'/F is unramified}.

Lemma 1. Ifk2^\ mod 9, íÁzen 50 C 5(Q, Ak2)2.

Proof.   Let a G S'0 correspond to K'/K.   Let p be a prime.  At first assume

P'fék.   Then Ak2 has good reduction mod p, and as K /Q is unramified in p we have:

Hx(G(k;/Qp), Ak2(K't))2 =0    for p Ip

(cf. [4]), hence 7PW«)) = 0.   Now assume p\k,p¥^ 2. As s^<£ Qp we conclude

^fc2(Qp)2 = U°°> oc)}; and the theorem of Lutz [5] gives:  ^(QpV^^CQp) =

{0}.  Using the Täte pairing [7] we get Hx(Qp, Ak2(Q ))2 = {0}, and hence we

have again 7p(i¿>(a)) = 0.

The argument above works in the same way if p = 3 fk, as k2 £ 1 mod 9.

Let p be equal to 2, p tk.   Then 4fc2 has bad reduction of type c3 [6], as
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Ak(Q ) contains (0, k). F'/Q is unramified at all divisors SB of 2, hence:

Hx(G(K^lQp),Ak2(K¡))2=0,

and hence:

ß2(a) E im S2(Ak2(Qp)/2Ak2(Qp)).

Now assume:   2\k.  Then 2 is completely ramified in Q($k), and not decom-

posed in F.   Let "B be an extension of 2 to F', and Z^ the decomposition field of 'B.

Then 4 > [Z : Q] > 2, as F'/F. is not cyclic.   Assume   [Z?: Q] = 2.  Then Z^ =

Q(f) (this is the only subfield of F' of degree 2 over Q, belonging to ,44 C 54 =

G(F'/Q)), and this is impossible.  So [Z„: Q] = 4, and hence all extensions of 2 are

fully decomposed in K'/K.   Hence, j32(a) = 0.

The situation is more delicate if k2 = 1 mod 9, for then ^4 2(Q3) contains a

point (- \/k2, 0) of order 2.  Nevertheless, we have in this case too:

Lemma 2.   S'0 C S(Q,Ak2)2.

Proof.   Again let a E HX(Q, Ak2(Q)2) correspond to K'/K.   Then we have as

above for p =£ 3:

7p(tfa)) = 0.

The same is true for the infinite place, as

HX(G(C/R),  Ak2(C)2) = Q.

a corresponds to a so-called 2-coveringD of Ak2, and we have a Q-rational map:  D

—► C of degree 2, where C is a rational curve defined over Q (cf. [2]). We want to

show:   C has a Q-rational point.  We know:   C has a divisor of degree 2, and hence

C admits an equation:

a, Y2 + a2X2 + a3XY + a4X + a5Y + a6

and C has a R-rational point and a Qp-rational point for all p =£ 3.  Then a refinement

of the theorem of Hasse-Minkowski gives:   C has a Q-rational point.  Hence D has a

divisor of degree 2, and so Z) admits an equation:

Y2 = aX4 + bX3 + cX2 + dX + e = g(X);   with 3 \c and ae = bd mod 3.

(This follows from the conditions for the invariants of D: 0 = j(Ak2) = 12ae - 3bd

+ c2.) _

Now we look at a place "BI3 of F'.  Then F^ is either equal to Q3(\/~3), or

equal to Q3(V_ 3, \/- !)•

In the first case we have: SB is fully decomposed in K'/K, and ß2(a) = 0 (as

//1(G(Q3(v/r3)/Q3)^fc2(Q3(V:r3))2) = 0).

Assume the second case.  We know by use of the inflation-restriction sequence:

/?3(a) G Hx(G(Q3(s/':l)/Q3), Ak2(Q3(^))2).

Let x0 G Q3.  Then
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0 (i)

\     a2        (ii)

g(x0) =  / -a2        (iii)

I    3a2      (iv)

( -3a2      (v)

for some a£Q|.

In case (i) ß3(a) is split by Q3, and we have a contradiction.  In the second and

in the fifth cases <p3(ß3(a)) is split by Q3(y/~3), and as Hx(G(Q3(y/-3)/Q3),

Ak2(Q3(\/-3))) = 0 we have:  ¡fi3(ß3(a)) is split by Q3, and so

ß3(a) = ô3(a),      aG^lfc2(Q3).

Asylk2(Q3)/2i4fc2(Q3) = <a2> where a2 = (-yjlr, 0) is the Q3-rational point of

order 2, we have:

ß3(a) = ö3(a2)    or   j33(a) = 0.

Now a2 is divisible by 2 only after adjunction of a point of order 4, and this adjunc-

tion gives a ramified extension L of degree 4 over Q3(V_ !)>(£- = Qs(^, V~l)),

and so 53(a2) is not split by Q3(V_ 1), hence ß3(a) = 0, and we have a contradiction

again.

Assume now:  g(x0) = -a2 or g(x0) = 3a2.

Define:   a: y2 = -g(x) E Hl(Q, A_k2(Q)2).  Then <p3(ß2(a')) is split by

Q3(V_3), and as above we conclude (arguing with ^4_fc2 instead of Ak2) that a' is

split in Q3, and hence a is split in Q3, and the lemma is proved.

We even proved more than Lemma 1 and Lemma 2:   For any a E Sq we have

ß3(ot) = 0, and so:   All divisors of 3 are completely decomposed in K'/K.

The information for p = 2 we obtained is as follows:   If a G 5¿ and 2 Tk, then

ß2(ot) = 52(a), a E Ak2(Q2); and Q2(^a) is unramified over Q2.   If 2\k, then ß2(a)

= 0.

An easy consequence of Lemma 1 and Lemma 2 is:

Theorem 1 (correction of Satz 4 in [4]).   There is a one-to-one correspondence

between C\2(k) and the set of all unramified admissible extensions K'/K.  If 2\k, then

all divisors of 2 are fully decomposed in K'/K.  If pi3, then p is fully decomposed in

K'/K.

Now define:   SQ = {a G 5(Q, Ak2)2,ß2(a) = ß3(a) = 0}.  Then 50 C S'0, for

if F' corresponds to a G S0, then K'/K is unramified outside {2, 3}. But as ß (a) =

0 for p = 2, 3 we must have:   All primes "B of F dividing 6 are completely split in

K'/K, and hence K'/K is unramified.

If 2\k, we have S'0 = SQ.   Assume   2 ffc.  A 2(Q2)/Z4fc2(Q2) s Z/2 x Z/2,

an explicit base is given by <a,, a2> with a, = (- fylc, 0) and a2 = (4, ^0) with y\ =

43 + k.   Then a E S'0 iff 03(a) = 0 and ß2(a) E <<52(a2)>, and hence

S'0 = {a E S(Q, Ak2)2,ß3(a) = 0 and a G ß~x(b2(a2))}.
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We have already proved this assertion in one direction.  The converse:   Let a E

S(Q, Ak2)2 with ß3(a) = 0 and ß2(a) = S(a2).  Then the associated K'/K is ramified

at most in the primes"BI2.  As res^-i (ß2(ct)) = 0, there is a 6 G Ak2(KL) with 26 =

a2, and ß2(a) is split in Fp(6) (P =^8 IF), an unramified extension of F„ of degree 2.

Hence, resjç- (b)(ß2(a)) = 0, and so F^ = Fp(6).  If ß2(a) = 0, then F^ = Fp (see

above).  So we proved the

Theorem 2 (correction of Satz 5 of [4]). S0 C C12(A:), and [C\2(k): S0] < 2.

We have:

[Cl2(k): S0] = 2    if and only if there is a E kex(ß3) O 5(Q, Ak2)2

with ß2(a) = ô(a2).

Example,   k = 11.  Then (12, 43) G Ak2(Q), S(Q, Ak2)2 = Z/2, SQ = {0},

kex(ß3) = 5(Q, .4fc2)2, and ß2(S(Q, Ak2)2) = <ôa2> = <S(12, 43)>.  So S'0 = Z/2, and

Cl2(ll) = 2 (as known).

3.  Computation of S'Q.  Following [2] we have to look for (inequivalent) forms

y2 = g(x) = ax4 + 6x3 + ex2 + dx + e

with a, 6, c, d, e E Z, and

(1) 0= 12ae-36ci+c2,

(2) e ■ 33k2 = 12ace + 9bcd - 21ad2 - 21eb2 - 2c3,

where e = 1 or e = 2*.

The case e = 26 would require 85% of the computation time and so we are glad

to have the following fact:   If a corresponds to y2 = g(x) with e = 26, then a £ Sq.

The reason for this fact is the following

Lemma 3.   Let k G Z\{ 0} be arbitrary, a E S(Q, Ak)2, a corresponding to the

form y2 = g(x). If ß2(a) is split by an unramified extension o/Q2, then e = 1.

Proof.  g(x) has a zero in an unramified extension of Q2, and an easy checking

of polynomials of degree 4 mod 2 shows that then e = 1.  (For details see [3].)

We now use the condition that for a E S'0 we have j33(a) = 0.   Let k E Z\{0}

be arbitrary again. Ak and A_k axe isomorphic over Q(V_ 1), an isomorphism e: Ak

—+ A_k is given by (x, y) —► (~x, V- 1^)-

If G(Q(V_ 1 )/Q) = < &*>, then a°e = ©e°a(© means the inverse in A_k).

Hence, Ak(Q)2 4?A-k(Q)2 is a G(Q/Q)-isomorphism, and so we have

HX(Q, Ak(Q)2) -y HX(Q, A_k(Q)2)

given by:  y2 = g(x) —► y2 = -g(x). _

Lemma 4.   For ctEHx(Q, Ak(Q)2) we have:

ß3(a) = 0      if and only if 73(f(a)) = y3(<p(eoi)) = 0.

Proof.   If ß3(a) = 0, then ß3(e(a)) = 0 and so

73Wa)) = y3(ifi(ecx)) = 0.
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Assume conversely that y3(<p(à)) = y3(ip(eaj) = 0. Then e(a) EHX(Q, A_k)2, and

£:= j3(v(e(a))) G Hx(G(Q3(^~l)/Q3), A_k(Q3(V=ï))) = Hx((o),A_k(Q3(^=ï))).

So there is an element b E A_k(Q3(\/- 1)) with ob + b = 0 and £(a) = ob - b.   But

now we use the assumption that % = 0 in Hx((o), A_k(Q3(\/- 1))) and conclude that

6 has the form:   b = ob' - b', b' G /4_fc(Q3(vM))-  Then a:= e_1(6) G Ak(Q3) (as

0 = e~x(ob + b) = -o(e~x(b)) + e~x(b)) and ß3(a) = 6(a), and there is a' = e-1(¿/)

such that a = a' + oa .  As A k(%(sp\))2 = ^k(Q3)2> we have N0(Ak(Q3(yf~\))) =

2Ak(Q3); hence a = 2a", a" G Ak(Q3), and so |33(a) = 0.

Remark.   Lemma 4 means:   If y2 = g(x) E S(Q, Ak)2 and y2 = -g(x) E

S(Q, A_k)2, then g has a zero in Q3.  This can be checked by an elementary discus-

sion ofg(x) without using cohomology, cf. [3].  (Unfortunately, this elementary

proof is too extensive to print here.)

Lemma 5.   // 2 \k and 23 -\ k, and aEHx(Q, Ak)2, then ß2(a) = 0 if and only

ify2(<p(<*)) = 72(<P(e(a))) = 0.

Proof.   As in the proof of Lemma 4 we have :

ß2(a) = 8(a),      a E Na(Ak(Q2(y/~l))).

As ̂ fc(Q2)/Z4fc(Q2) = Z/2 and 2Ak(Q2) C N^A^Q^s/^l))) we have only to show:

//°(G(Q2(Vri)/Q2)Mfc(Q(Vr:i))) * 0.

But an easy computation shows that any (x, y) E Ak(Q2) with u2(x) = -4 is not in

N0(Ak(Q2(^~V))-
Remark.   If 2 f k and a G 50, then a = (y2 = g(x)), with

x4 + x + 1

x4 + x3 + 1 mod 2

x4 + ::3 + x2 + x + 1

Six)

or g(x) has a zero in Q2.  Then yz     ~g(x) has a Q2 -rational point.  Using this and

Lemmas 3,4 we see that S'Q C {a G 5(Q, ^2)2 ! a = (y2 = ¿r(x)) with e = 1 and

(y2 = ~g(x)) E S(Q, A_k2)2} =: S'¿.  (In the program 5(Q, Ak2)2 and 5(Q, ^_&2)2

are computed simultaneously.) We have S'0 = S'q if2\k.  An easy checking of polyno-

mials of degree 4 mod 2 shows that S'0 = S'^ if 2 f k.

If we summarize our results obtained till now we see:   Given S(Q, A 2)2 we can

pick out at once the elements belonging to 5¿.  The remaining unpleasant feature is

that in order to compute Cl2(k) we have to deal with k2\

S'0(k):= {a G 5(Q, Ak); ß3(a) = 0 and j32(a) is split by

an unramified extension of Q2}.

Lemma 6.    \S'0(k)\ = l501, and S^(k) is characterized in S(Q, Ak)  in the same

way as S'0 in S(Q, Ak2).

Proof.   The second assertion is clear as in Lemmas 3, 4, 5, k was arbitrary (and

not necessarily a square).  If we had done our theory with k4 instead of k2, we would

have got the same results, so \S'0\ = \S'0(k'i)\.
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We have to show:   \S'0(k4)\ = IS¿(fc)l. A 4 is isomorphic to Ak over Q(y/k).

Again we denote this isomorphism by e, and so we have an isomorphism

e: HX(Q, ^fc4(Q)2) ^ "'(Q. Ak(Q)2).

Now let a E S'0(k4). Then o; is split by an admissible unramified extension K'/K. Let ''B

be a prime of F'. IfxB ̂ 6 ■ k, vB|p,then,4fc has good reduction inp, and F'/Q is unrami-

fied in p. Hence, <pp(ßp(e(cx))) = 0. If "B \k, "B to, then

H'iQp, Ak4(%))2 =Ak4(Qp)/2Ak4(Qp) = 0

as ̂ fc4(Qp) is divisible by two, and by the Täte duality HX(Q    -4fc4(Qp)) is dual to

^4fc4(Qp)/2J4fc4(Q ).  The same thing is true for ,4fc.   Hence, ßp(a) = 0, and so

ßp(ea) = 0 too.

If "BI3, then j33(a) = 0 as a E S0(F4), and so ß3(ea) = 0.  If'Bl2 and 2lJt, then

again ]32(a) = ß2(ea) = 0.  If-Bl2 and 2 \k, then j32(a) is given by y2 = g2(x), where

g2 is a polynomial described on page 564. But then ß2(e(a)) is given by the same form

mod 2.  Hence, e(a) E S'0(k).

The converse direction is proved in the same way.  The only point one has to

think about is that the admissible extension F' belonging to a G S'0(k) is unramified

over F:   If"B -f6k, then Ak has good reduction in1"?, and

Hx(G(K;/Qp), Ak(K^)) = HX(G(K^/L), Ak(K$)GWp>

= Hom(G(Fk/LMfc(Fç)2)G(L/(V.

If L j= Ky, then xe%L(ß (a)) ¥= 0, and we have yp(ß (a)) + 0, and hence a £

S(Q,Ak)2.
lfy\3k, y i 2, then ßp(a) = 0, and so L has to be equal to Ky. LetsBl2. If

2\k, then ß2(a) is split by an unramified extension of Q2 if and only if ß2(a) = 0,

and hence again L has to be equal to F«.  If 2 f k there are two possibilities:

(i)   Q2(\/k) is unramified over Q2, and ß2(a) = 5((4,,y0)) with y2 = k mod 2.

As in the proof of Lemma 1 we see:  L = Fp.

(ii) Q2(\/k) is ramified over Q2. Then Q2(\/-k)IQ2 is unramified. ß2(a) is

split by KL, hence ß2(e(a)) is split by F¿, (7: Ak —► A_k over Q(V_ 1)), and we

are in the case (i) using the curve A_k instead of Ak, so L = F^ in this case, too.

4.   Results.  The program was written in ALGOL 60 and implemented on a

TELEFUNKEN-COMPUTER TR 440.   For the detailed algorithm see [2].  We re-

mark that we have spent much time in making the algorithm more efficient, that is,

in making it quicker.   Birch and Swinnerton-Dyer calculated Selmer groups up to

400 and we would be unable to get up to 10 000 with their unaltered algorithm.

This work was very technical (congruences, calculations with invariants, etc.). For

details, which cannot be given here, see [3].  We have computed Cl2(k) for

1 < k < 10 000.  The calculation of one C\2(k) required about 0.0063*fc seconds.

Of course, this formula is only approximate, because the computing time also depends

on the number of elements in Sq.

To illustrate our method we give the example k = 1259.  The first stage is to
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find all forms y2 = g(x) = ax   + bx   + ex2 + dx + e (a, b, c, d, e E Z) with the

invariants

(i) 7=0= \2ae-3bd + c2,

(ii) J = 27 • k = 12ace + 9bcd - 21ad2 - 21 eb2 - 2c3.

Birch and Swinnerton-Dyer give bounds for a, 6, c.  For a fixed triple a, 6, c one

can compute d and e.   If cf and e are integers, then we have found a new form.  Here,

a is an element of the interval B = [-1, 23].   For each a G F we have the following

values for 6: -2lal < 6 < 2lal.

Take a = +4, 6 = -7. Then c ranges in the interval [- 10, 20], but only for

c = -6 do we succeed in finding integers d and e (d = + 28, e = - 13). So we get

the form (*).  At the end of stage 1 we obtain a list of 6 forms.

y2 = x3 + 1259 (the curve itself satisfies (i) and (ii)),

y2 =gi(x) = Hx4 + 12x3 + 12x2 + 15x + 3,

y2 = g2(x) = 4x4 - 7x3 - 6x2 + 28x - 13 (*),

y2 = g3(x) = 3x4 - 6x2 + 21x - 1,

y2 = g4(x) = 3x4 + 4x3 + 18x2 + 15x - 4,

y2 = g5(x) = 3x4 + 3x3 - 15x2 + 21x - 1.

This step of the program requires by far most of the computing time.

In stage 2 we reject those forms which are equivalent to a form previously ob-

tained.  Two quartics g(x) and g*(x) are equivalent if and only if there are integers

a, ß, 7, S such that

(7X + o)4      /ax + ß
g(x) = ———■>£'

(ad -07)      \7x + 5/

In our specific example we have the following equivalences:

gi(x) = x4gj^1j   (i.e.a=0 = 7= 1,5=0),

(-x + 2)4      /_x _ ,

*2(*) = -c-^41 Z^^I }    0-e- a = 0 =

So we delete the forms y2 = g4(x) and y2 = g5(x).

We remark that no ^;(x) has a rational zero and so no g¡(x) can be equivalent

to the curve y2 = x3 + 1259.

Up to this stage all calculations were carried through for y2 = x3 + 1259 and

y2 = x3 - 1259 simultaneously, because the forms only differ by their sign.

From now on we have to deal with the curves separately.   In stage 3 we reject

those forms for which y2 = g(x) is insoluble in some p-adic field.   Using the ideas of

Newton's Approximation Lemma, Birch and Swinnerton-Dyer give two lemmata which

decide the local solubility [2].  We obtain the following results:
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For k = 1259 we have the forms:

j>2=x3+ 1259,      y2=g2(x).

For k = -1259 we have the forms:

jy2 = x3 - 1259,   y2=~gx(x),   y2=-g2(x),   y2=~g3(x).

Following the remark on page 9 we conclude that IC12(1259)I = 2.  We know from

[1] that 1(3(1259)1 = 4 and so Cl(1259) s Z/4.

Our final output was a table consisting of 46 pages, which will be placed in the

UMT file.  We have listed the class number ICl(Är)I, the 2-class number lQ2(fc)l and,

if possible, the 2-type of the class group.  The determination of the 2-type was not

possible in 39 cases.  The class numbers of the pure cubic fields Q($k) we took from

the table of P. Barrucand, H. C. Williams and L. Baniuk [1].  None of our calcula-

tions contradicted their table.  The authors would like to thank Dr. D. Shanks and

Dr. H. C. Williams for sending us this table.

Altogether we have examined 8122 numbers.  See Table 1 for the frequency

of the 2-class numbers appearing.  Table 2 indicates the frequency of the 2-class

numbers for the 1229 primes.  In Tables 3 and 4 we divided the primes into classes

modulo 4 and modulo 9.  We remark that all primes p with ICl2(p)l = 8 are con-

gruent to 3 modulo 4, which could happen by chance, of course.

The primes p = ± 1 mod 9 have relatively small 2-class numbers. It seems that

the reason for this is the fact that Ak: y2 = x3 + k has a point of order 2 in Q3 iff

k2 = 1 mod 9 and so

Hl(Q3, Ak(Q3))2 = Ak(Q3)/2Ak(Q3) s Z/2,

whereas in the case k2 ^ 1 mod 9 we have

"'(Qs. ^(Q3))2 = Ak(Q3)/2Ak(Q3) ~ {0}.

Hence elements lying in the Selmer group of Ak have "more chances" not to be in

the kernel of the reduction mod 3 if k = ± 1 mod 9.  We do not think that the

above-mentioned fact depends on the discriminant d of Q(\/p):

I-3p2      ifp = ±l mod 9,

-27p2    if p# ±1 mod 9.

For we calculated the quotient Nx(c)/N2(c), where

# primes = c mod 9, class number odd,        I discriminant < d (i = 1),

N?(c) = for

# primes = c mod 9, class number even,        ( discriminant < d (i = 2),

as a function of the congruence class c mod 9.  As one can see in Table 5 the quo-

tient is nearly constant and not far from 1 if the congruence class is not equal to ± 1

modulo 9 and greater than 2 in the other cases.

The division of the primes into other residue classes did not indicate any ir-

regularity.
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Table 1

ICL2(fc)l = 1     4612 56.79%

\CL2(k)\ = 2     2983 36.72%

\CL2(k)\ = 4       513 6.32%

ICL2(fc)l = 8          14 0.17%

Table 2

\CL2(p)\ = 1     676 55.01%

ICL2(p)l = 2     468 38.08%

ICL2(p)l=4       80 6.51%

ICL20)l = 8         5 0.40%

Table 3

\CL2(p)\ = l      \CL2(p)\ = 2     \CL2(p)\ = 4     \CL2(p)\

p = 1 mod 4     348        217        44 0

p =3 mod 4     327 251 36 5

Table 4

\CL2(p)\ = 1  ICL2(p)l = 2  ICL2(p) I = 4 \CL2(p)\ =

p = 1 mod 9

p = 2 mod 9

p = 4 mod 9

p = 5 mod 9

p = 7 mod 9

p = 8 mod 9

149

'H

97

99

06

140

50

85

92

94

88

59

4

26

15

16

17

2

(J

2

2

0

1

0
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Table 5

-d ■ 10~6 <  3 12 27 48 75 108 147 192 243 300 2700

<(1)
Nd2(\)

S.O 5.7 4.1 3.2 3.4 3.5 3.2 3.0 2.9 2.

<(-!)

Nd2(-\)
2.2 2.1 2.2 2.3 2.5  2.7 2.7 2.7 2.5 2.3

Ndx(2)

Nd2(2) 1.2 1.0 1.0 1.0 0.8 0.8 0.9 0.9 0.9 0.9 0.S

Nj(4)
Nd(4) 1.5 0.7 0.9 1.2 1.4  1.3 1.3 1.2 1.2  1.3 0.9

Nd(5)

Nd(5) 2.0 1.2 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.9

N1(1)
Nd2(l)

0.6 1.1 1.0 1.0 1.0 0.9 1.0 1.1  1.0 1.0 0.9
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