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On the Convergence of a Quasi-Newton Method
for Sparse Nonlinear Systems

By Binh Lam

Abstract. It is shown that an algorithm for solving a system of nonlinear equations

where the Jacobian is known to be sparse, converges locally and Q-superlinearly.

1. Introduction. Consider the problem of finding the solution of a system of
nonlinear equations F(x) = 0, where F and x are n-dimensional vectors. Broyden [1]
derived a quasi-Newton method using an iteration of the form

(1.1) X1 =X + 4Dy
where ¢, is a scalar and p,, is given by
(1.2) Byp, = —Flxy),

B, being an approximation to the Jacobian. To avoid solving the system of linear
equations (1.2), an approximation to the inverse Jacobian which is updated at every
iteration by a single rank correction is used. However, this method has a drawback
when applied to a system where the Jacobian is known to be sparse since the inverse
of a sparse matrix is generally not sparse. Schubert [7] modified this method by up-
dating B, so that the sparsity is retained. It has been proved by Broyden [3} that the
modified algorithm is locally convergent when the Jacobian satisfies a Lipschitz condi-
tion. He also reported that numerical results suggested that the convergence is super-
linear in most cases. In this note, we show that the modified algorithm in fact pre-
serves the convergence properties of the original method. It has a Q-superlinear rate
of convergence when applied to linear systems. Furthermore, under certain conditions,
the convergence is also Q-superlinear for nonlinear cases.

2. Main Results. Let S]. be a diagonal matrix whose (I, /) element is zero if the

(, 1) element of the Jacobian is zero, and unity otherwise. To simplify the notation,

we let B and B, denote the approximation to the Jacobian at kth and (k + 1)st step,

respectively. Let B have the same sparseness characteristic as the Jacobian and B, be
given by

T .

(2.1 B, =B- Y uu/Bp,—{'y) -,

j=1 p p;j

where y = F(x,) — F(x), p; = S;p and u; is the jth unit vector. We note that the spar-

sity is preserved in B, since u]-T B, = uiT B,S;.
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We now prove that the convergence of the algorithm defined by (1.1), (1.2) and
(2.1) is Q-superlinear for a linear system F(x) = Ax + b, where 4 is an n x n matrix.
Let

E=B—-4, e=x—x*,
and

o=IEl,, e=lel,

where x* is the solution of F(x) = 0. We use ll-l to denote the Euclidean norm and
Il - the Frobenius norm.
THEOREM 2.1. Ift, = 1 for all k and agy < 1, where o = 1Az then

€ < (K/k%)"eo,

where K = a¢y/(1 — ag,), when the algorithm is applied to the linear system F(x) =

Ax + b.
Proof. Since t = 1 and y = Ap, from (2.1) we have
T
n pp
e T Uit
(2.2) E,=E Z uuj E——=.
j=1 pj pj
Thus,
T T\T T 2
p:D; DiD; lu; Ep;|
luE, 12 = <ujTE ~ufE L)\ WE-ulE 2| = WuJE? - ———,
P; Pj P Pj ;1

on expanding the terms on the right-hand side. As

Try — T T 2 2
uj Ep; = u; ES;p = u; Ep and Ip;I* < Ipl=,

IIuI.TE1 1?2 < IIuI.TEII2 - M{:"sz
pl
Summing over j, we obtain
(2.3) 92 < ¢ - IEpI?/lpl2.
Since
IEpI2/Iph? < IENZ < IENZ = ¢2,
we have

IEpI2/Ipl? = 692,
for some 6 such that 0 <8 < 1. Hence, ¢f < ¢2(1 —0). In general, we have

¢12<+1 < ¢12c(l - ek)»

which implies
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k
ot <905 [T 1-06,).
=1
Since E=B—-A, B =@ +A"E)"!, and
2.4 p=-Bl'de=-(I-A"'E) e

Thus, if agp < 1, then

2.5) 1Epl < 1ENlpl < ge/(1 - o).
From (2.4), we also have e, ; = —A'E,p, ; from this and (2.5),
g2 , Ok

2 2
€1 SO

as ¢ < @ by (2.3).

The proof now proceeds in the same fashion as that of Theorem 2 in [2]. We
note that Frobenius norm is used here but this change of norm has no effect on the
proof.

To analyze the convergence for nonlinear systems, we assume that F satisfies the
following conditions:

(a) F is differentiable in an open convex set D in R”, the linear space of n-
dimensional vectors.

(b) For some x* € D such that F(x*) = 0, F'(x*) is nonsingular and F' is
continuous at x*.

(c) F' satisfies a Lipschitz condition of order one at x* so there exists a positive
constant L such that

(2.6) 1F'(x) - F'(x*)I < Llx — x*1.

We need the following result which is a special case of a more general theorem
proved by Broyden, Dennis and Moré [4].
THEOREM 2.2. Suppose F satisfies assumptions (a), (b), (c), and for all k,

(2.7) 1B sy — F'e®)z < 1B, — F'(x®)l, + agy,

where o is some constant and o, = max{lx, ,; — x*I, lx, —x*I}. Then there exist
positive constants € and & such that if lx, — x*I <e and |B, — F'(x*)l <&, the
sequence (1.1) with t,, = 1 is well defined and converges linearly to x*.

We have the following result.

THEOREM 2.3. If F satisfies assumptions (a), (b) and (c), then the algorithm
defined by (1.1), (1.2), (2.1) with t,, = 1 is locally convergent.

Proof. We want to prove that the algorithm satisfies (2.7). From (2.1), we have

n pp] p
(28) B, -F'(x*)=Y uul {[B-F'x*)] <1 - T—’> th-F '(x*)p]<—;’——>
j=1 i Pi i Pj

Thus, since ujT Bp = uiT Bp; and u]-T F'(x*)p = u]-T F'(x*)p;,
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T % T "ok / pipiT
W18, - F'(e)] = ul (B~ F(x )1(1—;;)
757

pT
+ u]-T[y - F'(x*)pj]<—7,]—->.

p; pj

(29)

Since u]y = ul F'(x + \;p)p;, where 0 <X, <1 (see [6, p. 660]) and F' satisfies
Lipschitz condition (2.6),

IuiT[y - F'(x*)pi] I<Llx + Np —x*I ;1
(2.10)
SLINGe, = x*) + (1= N = x|
< Lolip;Il.
From (2.9), we obtain
Nl By = F'(xe®)] 12 < lul [B - F'(x*)] 17 + L2,
Summing over j,
1B, — F'(x*)IZ < IB = F'(x*)I% + nL?¢>.
Hence,
1B, = F'x*)lp < IB - F'x*)lz + nLo,
as (> +82)” < a + B for a, = 0. The result then follows from Theorem 2.2.
To obtain the Q-superlinear convergence of the algorithm, we need the character-
ization given by Dennis and Moré [5].
THEOREM 2.3. Suppose F satisfies assumptions (a) and (b), and for some x, €
D, the sequence (1.1) with t,, = 1 is such that x, # x*, x;, € D and {x, } converges
to x*. Then {x,} converges Q-superlinearly to x* if and only if
B — F'e®)] (g g g — x )N
lim =

k— oo “.xk+l "‘xk"

(2.11)

We have the following result.

THEOREM 24. Suppose F satisfies assumptions (a), (b), (c), then the algorithm
defined by (1.1), (1.2) and (2.1) with t, = 1 generates a sequence that converges
Q-superlinearly.

Proof. We note that since {x, } is linearly convergent,

(2.12) T o, <o,
k=1

We need to prove that (2.11) is satisfied. Let

n ] pplT
C=Y uul[B-F M- )
=1 p; pj
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Setting £ = B — F'(x*) in (2.2) and (2.3), we obtain

I[B — F'(x*)] pll?
Ipl2

ICI% < 1B - F'(x*)IZ -
Since (a? - $2)” < a - $2/2a,

1
( ) IICIIF n 3 ve,

where n = 1B - F'(x*)I; and y = I[B = F'(x*)] pl/lpl.
By using (2.10), (2.13) in (2.8) we obtain
1 2
<n-5-y? +Lo.
m<n 2n\1/ Lo
Thus, in general, we have
1 2 %
<n - 2,
Me+1 S Mk n, Vi + Logn
In particular,
Merr S+ Logn*,

which implies that {7, } is bounded due to (2.12). Let M be its upper bound; then

1 1
ﬁ‘l’i < Mgyt + Logn”
Hence, for any m = 0,
1 m 2 v, m
o 2 Ve STL Y 0k F g T My
k=0 k=0

Since Zy—_o 0 <, Z-o %2( is bounded. Furthermore, as 2',:;0 1[/: is mono-
tonic increasing, lim,, _, ., Zy—, d/,f exists, we therefore must have lim,_, ., ¢, = 0.
The result now follows from Theorem 2.3.
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