The irregular primes to

Author:
Samuel S. Wagstaff

Journal:
Math. Comp. **32** (1978), 583-591

MSC:
Primary 10A40; Secondary 10B15, 12A35

DOI:
https://doi.org/10.1090/S0025-5718-1978-0491465-4

MathSciNet review:
0491465

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We have determined the irregular primes below 125000 and tabulated their distribution. Two primes of index five of irregularity were found, namely 78233 and 94693. Fermat's Last Theorem has been verified for all exponents up to 125000. We computed the cyclotomic invariants , , , and found that for all . The complete factorizations of the numerators of the Bernoulli numbers for and of the Euler numbers for are given.

**[1]**N. C. Ankeny and S. Chowla,*A further note on the class number of real quadratic fields*, Acta Arith.**7**(1961/62), 271–272. MR**137697**, https://doi.org/10.4064/aa-7-3-271-272**[2]**J. BERTRAND, Personal communication.**[3]**H. T. DAVIS,*Tables of the Mathematical Functions*, v. II, The Principia Press, San Antonio, 1935.**[4]**R. Ernvall and T. Metsänkylä,*Cyclotomic invariants and 𝐸-irregular primes*, Math. Comp.**32**(1978), no. 142, 617–629. MR**482273**, https://doi.org/10.1090/S0025-5718-1978-0482273-9**[5]**Kenkichi Iwasawa,*On Γ-extensions of algebraic number fields*, Bull. Amer. Math. Soc.**65**(1959), 183–226. MR**124316**, https://doi.org/10.1090/S0002-9904-1959-10317-7**[6]**Kenkichi Iwasawa and Charles C. Sims,*Computation of invariants in the theory of cyclotomic fields*, J. Math. Soc. Japan**18**(1966), 86–96. MR**202700**, https://doi.org/10.2969/jmsj/01810086**[7]**John Johnsen,*On the distribution of irregular primes*, J. Number Theory**8**(1976), no. 4, 434–437. MR**432564**, https://doi.org/10.1016/0022-314X(76)90091-3**[8]**Wells Johnson,*On the vanishing of the Iwasawa invariant 𝜇_{𝑝} for 𝑝<8000*, Math. Comp.**27**(1973), 387–396. MR**384748**, https://doi.org/10.1090/S0025-5718-1973-0384748-5**[9]**Wells Johnson,*Irregular prime divisors of the Bernoulli numbers*, Math. Comp.**28**(1974), 653–657. MR**347727**, https://doi.org/10.1090/S0025-5718-1974-0347727-0**[10]**Wells Johnson,*Irregular primes and cyclotomic invariants*, Math. Comp.**29**(1975), 113–120. MR**376606**, https://doi.org/10.1090/S0025-5718-1975-0376606-9**[11]**D. H. Lehmer, Emma Lehmer, and H. S. Vandiver,*An application of high-speed computing to Fermat’s last theorem*, Proc. Nat. Acad. Sci. U.S.A.**40**(1954), 25–33. MR**61128**, https://doi.org/10.1073/pnas.40.1.25**[12]**Emma Lehmer,*On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson*, Ann. of Math. (2)**39**(1938), no. 2, 350–360. MR**1503412**, https://doi.org/10.2307/1968791**[13]**Tauno Metsänkylä,*Distribution of irregular prime numbers*, J. Reine Angew. Math.**282**(1976), 126–130. MR**399014**, https://doi.org/10.1515/crll.1976.282.126**[14]**Michael A. Morrison and John Brillhart,*A method of factoring and the factorization of 𝐹₇*, Math. Comp.**29**(1975), 183–205. MR**371800**, https://doi.org/10.1090/S0025-5718-1975-0371800-5**[15]**M. OHM, "Etwas über die Bernoullischen Zahlen,"*J. Reine Angew. Math.*, v. 20, 1840, pp. 11-12.**[16]**J. L. SELFRIDGE & B. W. POLLACK, "Fermat's last theorem is true for any exponent up to 25,000,"*Notices Amer. Math. Soc.*, v. 11, 1964, p. 97. Abstract #608-138.**[17]**J. L. SELFRIDGE & M. WUNDERLICH, Personal communication.**[18]**Carl Ludwig Siegel,*Zu zwei Bemerkungen Kummers*, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II**1964**(1964), 51–57 (German). MR**0163899****[19]**H. S. Vandiver,*On Bernoulli’s numbers and Fermat’s last theorem*, Duke Math. J.**3**(1937), no. 4, 569–584. MR**1546011**, https://doi.org/10.1215/S0012-7094-37-00345-4**[20]**H. WADA, Personal communication.**[21]**K. WOOLDRIDGE,*Some Results in Arithmetical Functions Similar to Euler's Phi-Function*, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1975.**[22]**Itaru Yamaguchi,*On a Bernoulli numbers conjecture*, J. Reine Angew. Math.**288**(1976), 168–175. MR**424669**, https://doi.org/10.1515/crll.1976.288.168**[23]**Hideo Yokoi,*On the distribution of irregular primes*, J. Number Theory**7**(1975), 71–76. MR**364130**, https://doi.org/10.1016/0022-314X(75)90008-6

Retrieve articles in *Mathematics of Computation*
with MSC:
10A40,
10B15,
12A35

Retrieve articles in all journals with MSC: 10A40, 10B15, 12A35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0491465-4

Keywords:
Bernoulli numbers,
Euler numbers,
irregular primes,
Fermat's Last Theorem,
cyclotomic invariants

Article copyright:
© Copyright 1978
American Mathematical Society