The irregular primes to $125000$
HTML articles powered by AMS MathViewer
- by Samuel S. Wagstaff PDF
- Math. Comp. 32 (1978), 583-591 Request permission
Abstract:
We have determined the irregular primes below 125000 and tabulated their distribution. Two primes of index five of irregularity were found, namely 78233 and 94693. Fermat’s Last Theorem has been verified for all exponents up to 125000. We computed the cyclotomic invariants ${\mu _p}$, ${\lambda _p}$, ${\nu _p}$, and found that ${\mu _p} = 0$ for all $p < 125000$. The complete factorizations of the numerators of the Bernoulli numbers ${B_{2k}}$ for $2k \leqslant 60$ and of the Euler numbers ${E_{2k}}$ for $2k \leqslant 42$ are given.References
- N. C. Ankeny and S. Chowla, A further note on the class number of real quadratic fields, Acta Arith. 7 (1961/62), 271–272. MR 137697, DOI 10.4064/aa-7-3-271-272 J. BERTRAND, Personal communication. H. T. DAVIS, Tables of the Mathematical Functions, v. II, The Principia Press, San Antonio, 1935.
- R. Ernvall and T. Metsänkylä, Cyclotomic invariants and $E$-irregular primes, Math. Comp. 32 (1978), no. 142, 617–629. MR 482273, DOI 10.1090/S0025-5718-1978-0482273-9
- Kenkichi Iwasawa, On $\Gamma$-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183–226. MR 124316, DOI 10.1090/S0002-9904-1959-10317-7
- Kenkichi Iwasawa and Charles C. Sims, Computation of invariants in the theory of cyclotomic fields, J. Math. Soc. Japan 18 (1966), 86–96. MR 202700, DOI 10.2969/jmsj/01810086
- John Johnsen, On the distribution of irregular primes, J. Number Theory 8 (1976), no. 4, 434–437. MR 432564, DOI 10.1016/0022-314X(76)90091-3
- Wells Johnson, On the vanishing of the Iwasawa invariant $\mu _{p}$ for $p<8000$, Math. Comp. 27 (1973), 387–396. MR 384748, DOI 10.1090/S0025-5718-1973-0384748-5
- Wells Johnson, Irregular prime divisors of the Bernoulli numbers, Math. Comp. 28 (1974), 653–657. MR 347727, DOI 10.1090/S0025-5718-1974-0347727-0
- Wells Johnson, Irregular primes and cyclotomic invariants, Math. Comp. 29 (1975), 113–120. MR 376606, DOI 10.1090/S0025-5718-1975-0376606-9
- D. H. Lehmer, Emma Lehmer, and H. S. Vandiver, An application of high-speed computing to Fermat’s last theorem, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 25–33. MR 61128, DOI 10.1073/pnas.40.1.25
- Emma Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. (2) 39 (1938), no. 2, 350–360. MR 1503412, DOI 10.2307/1968791
- Tauno Metsänkylä, Distribution of irregular prime numbers, J. Reine Angew. Math. 282 (1976), 126–130. MR 399014, DOI 10.1515/crll.1976.282.126
- Michael A. Morrison and John Brillhart, A method of factoring and the factorization of $F_{7}$, Math. Comp. 29 (1975), 183–205. MR 371800, DOI 10.1090/S0025-5718-1975-0371800-5 M. OHM, "Etwas über die Bernoullischen Zahlen," J. Reine Angew. Math., v. 20, 1840, pp. 11-12. J. L. SELFRIDGE & B. W. POLLACK, "Fermat’s last theorem is true for any exponent up to 25,000," Notices Amer. Math. Soc., v. 11, 1964, p. 97. Abstract #608-138. J. L. SELFRIDGE & M. WUNDERLICH, Personal communication.
- Carl Ludwig Siegel, Zu zwei Bemerkungen Kummers, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1964 (1964), 51–57 (German). MR 163899
- H. S. Vandiver, On Bernoulli’s numbers and Fermat’s last theorem, Duke Math. J. 3 (1937), no. 4, 569–584. MR 1546011, DOI 10.1215/S0012-7094-37-00345-4 H. WADA, Personal communication. K. WOOLDRIDGE, Some Results in Arithmetical Functions Similar to Euler’s Phi-Function, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1975.
- Itaru Yamaguchi, On a Bernoulli numbers conjecture, J. Reine Angew. Math. 288 (1976), 168–175. MR 424669, DOI 10.1515/crll.1976.288.168
- Hideo Yokoi, On the distribution of irregular primes, J. Number Theory 7 (1975), 71–76. MR 364130, DOI 10.1016/0022-314X(75)90008-6
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Math. Comp. 32 (1978), 583-591
- MSC: Primary 10A40; Secondary 10B15, 12A35
- DOI: https://doi.org/10.1090/S0025-5718-1978-0491465-4
- MathSciNet review: 0491465