## On the convergence of difference approximations to nonlinear contraction semigroups in Hilbert spaces

HTML articles powered by AMS MathViewer

- by Olavi Nevanlinna PDF
- Math. Comp.
**32**(1978), 321-334 Request permission

## Abstract:

Convergence properties of the difference schemes (S) \[ {h^{ - 1}}\sum \limits _{j = 0}^k {{\alpha _j}{u_{n + j}}} + \sum \limits _{j = 0}^k {{\beta _j}A{u_{n + j}}} = 0,\quad n \geqslant 0,\], for evolution equations (E) \[ \frac {{du(t)}}{{dt}} + Au(t) = 0,\quad t \geqslant 0;\quad u(0) = {u_0} \in \overline {D(A)} \] are studied. Here*A*is a nonlinear, maximally monotone operator in a real Hilbert space. It is shown, in particular, that if the scheme (S) is consistent and stable for the test equation $x\prime = \lambda x$ for $\lambda \in {\text {C}} - K$, where

*K*is a compact subset of the right half-plane, then (S) is convergent as $h \downarrow 0$, with suitable initial values, for (E), on compact intervals [0,

*T*]. Moreover, the convergence is uniform on the half-axis $t \geqslant 0$, if the solution $u(t)$ tends strongly to a constant as $t \to \infty$. We also show that under weaker stability conditions one can construct conditionally convergent methods.

## References

- H. Brezis and A. Pazy,
*Semigroups of nonlinear contractions on convex sets*, J. Functional Analysis**6**(1970), 237–281. MR**0448185**, DOI 10.1016/0022-1236(70)90060-1 - Ronald E. Bruck Jr.,
*Asymptotic convergence of nonlinear contraction semigroups in Hilbert space*, J. Functional Analysis**18**(1975), 15–26. MR**377609**, DOI 10.1016/0022-1236(75)90027-0 - M. G. Crandall and T. M. Liggett,
*Generation of semi-groups of nonlinear transformations on general Banach spaces*, Amer. J. Math.**93**(1971), 265–298. MR**287357**, DOI 10.2307/2373376 - Germund G. Dahlquist,
*A special stability problem for linear multistep methods*, Nordisk Tidskr. Informationsbehandling (BIT)**3**(1963), 27–43. MR**170477**, DOI 10.1007/bf01963532 - Germund Dahlquist,
*Error analysis for a class of methods for stiff non-linear initial value problems*, Numerical analysis (Proc. 6th Biennial Dundee Conf., Univ. Dundee, Dundee, 1975) Lecture Notes in Math., Vol. 506, Springer, Berlin, 1976, pp. 60–72. MR**0448898**
G. DAHLQUIST, - J. Kačur,
*The Rothe method and nonlinear parabolic equations of arbitrary order*, Theory of nonlinear operators (Proc. Summer School, Neuchâtel, 1972) Schr. Zentralinst. Math. Mech. Akad. Wiss. DDR, Heft 20, Akademie-Verlag, Berlin, 1974, pp. 125–131. MR**0364880** - Nobuyuki Kenmochi and Sinnosuke Oharu,
*Difference approximation of nonlinear evolution equations and semigroups of nonlinear operators*, Publ. Res. Inst. Math. Sci.**10**(1974/75), no. 1, 147–207. MR**0388185**, DOI 10.2977/prims/1195192177 - Olavi Nevanlinna,
*On error bounds for $G$-stable methods*, Nordisk Tidskr. Informationsbehandling (BIT)**16**(1976), no. 1, 79–84. MR**488767**, DOI 10.1007/bf01940780
O. NEVANLINNA, - Olavi Nevanlinna,
*On the numerical integration of nonlinear initial value problems by linear multistep methods*, Nordisk Tidskr. Informationsbehandling (BIT)**17**(1977), no. 1, 58–71. MR**494953**, DOI 10.1007/bf01932399 - Tadayasu Takahashi,
*Convergence of difference approximation of nonlinear evolution equations and generation of semigroups*, J. Math. Soc. Japan**28**(1976), no. 1, 96–113. MR**399978**, DOI 10.2969/jmsj/02810096

*On the Relation of G-Stability to Other Stability Concepts for Linear Multistep Methods*, Report TRITA-NA-7618, Dept. of Comput. Sci., Royal Inst. of Tech., 1976.

*On Multistep Methods for Nonlinear Initial Value Problems with an Application to Minimization of Convex Functionals*, Report HTKK-MAT-A76, Inst. of Math., Helsinki Univ. of Tech., 1976.

## Additional Information

- © Copyright 1978 American Mathematical Society
- Journal: Math. Comp.
**32**(1978), 321-334 - MSC: Primary 47H15; Secondary 65J05
- DOI: https://doi.org/10.1090/S0025-5718-1978-0513203-9
- MathSciNet review: 0513203