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On the Convergence of Difference Approximations

to Nonlinear Contraction Semigroups

in Hubert Spaces

By Olavi Nevanlinna*

Abstract.   Convergence properties of the difference schemes

k k
(S) h      S a-u  +i +   Z ß-Au   ., = 0,       n > 0,

;=0 ' nT'     /=0 '     "  '

for evolution equations

(E) ^1 + Au(t) = o,       t > 0;       u(0) = "0 e dJÄ)

are studied.   Here A is a nonlinear, maximally monotone operator in a real Hubert

space.   It is shown, in particular, that if the scheme (S) is consistent and stable for

the test equation x' = Xx for \ S C - K, where K is a compact subset of the right

half-plane, then (S) is convergent as h i 0, with suitable initial values, for (E), on

compact intervals [0, T\.   Moreover, the convergence is uniform on the half-axis

t > 0, if the solution u(t) tends strongly to a constant as f —► œ.   We also show

that under weaker stability conditions one can construct conditionally convergent

methods.

Introduction.  We study the approximation of nonlinear contraction semigroups

by means of linear multistep methods.   In an earlier paper [12] we derived bounds

for the accumulated errors in terms of the local (truncation) errors.   If the solutions

are continuously differentiable, then the local errors are small enough for the error

bounds to imply the convergence as the step length tends to zero, uniformly on com-

pact time intervals.

Here we study the convergence without assuming smoothness of the solutions.

In order to show the convergence on compact time intervals we replace the operator

by its Yosida approximation.   Since the Yosida approximation is Lipschitz-continuous,

the solutions are in C1 and our difference methods yield convergent approximations.

The main task then is to bound the difference between the solutions of the original

and approximated difference equations.

For one special method, namely the implicit Euler method, the convergence on

compact time intervals is well known, stating that the semigroup Sit) is obtained from

the generator -A by the product formula

Sityx =  lim  (7 + 1-a\   "x    for all x G DÇ4),
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see [1], [2].  Difficulties in generalizing this result to other methods are hidden in

the fact that the contractiveness is generally not preserved under discretization.   In

Hubert spaces we still have enough contraction-like behavior to proceed (see Theorem

1 below), but in Banach spaces the only results we know are for the implicit Euler

method, see, e.g. [4], [9], [13].

Under some conditions S(r)x tends strongly to a limit as t —* °°, see [3]. We

show that our approximations then converge not only on compact time intervals but

uniformly on the half-axis t > 0.

We also demonstrate that our class of methods cannot substantially be enlarged,

and give a convergence rate for problems with initial values inside the domain of the

operator A.

We finally show that all stable multistep methods which are not weakly stable

can be used to build conditionally convergent methods, where one approximates the

nonlinear operator by its Yosida approximation and relates the growth of the Lip-

schitz constant to the decrease of the step length.

2.  Results.   Let 77 be a real Hubert space and A a generally nonlinear single-

valued operator DiA) EH —* 77.   The operator A is said to be monotone if

(1) (u - v, Au - Av) > 0    for all u, v E DiA),

and maximally monotone if additionally 7?(7 + A) = H.   By the solution of the ini-

tial value problem

dujt)

dt
(2) ^ + Au(t) = 0j      i>0;      uiO) = u0EDiA)

we shall mean the unique continuous function u: t —► S(?)"0, where 5(r) denotes the

contraction semigroup generated by -A, see [1].  The initial value problem is ap-

proximated using linear multistep methods (p, a):

(3)       h-'piE)uhn + aiE)Auhn =0,       n > 0,      U*,..., u\_x E DiA) given.

In (3) E denotes the translation operator Eyn = yn+ x, h > 0 is the step length and p

and o are polynomials

(4) p(f) = ¿ <*,?',   a(o = ¿ py
/=o ;=o

with real coefficients and with no common divisor.

We first give a result concerning the solutions of (3).

Consider

(5) h~1piE)un + oiE)Aun = rn + k,      n>0,

and
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(6) h-lp(EXun - vn) + aiEXAun - Avn) = fn + k,      n > 0.

Theorem  1. Suppose that the method (p, a) satisfies

(7) P(1) = 0,      p'(l)=a(l),

(8) Re£«-)>0   fijr\t\>l,

(9) oQ;)*0   on |?] = 1.

If A is maximally monotone, then for any given {rn} C 77 and {u0, ..., uk_x} C

D(A) there exists a unique {«„} C D(A) satisfying (5). Moreover, there exists a con-

stant C, depending only on the method (p, a) such that for {un - vn} satisfying (6)

we have, for all n~> k,

(10) \u„ - vn\ < C J 0maxfc [\Uj - vf\ + h\Au¡ - Av¡\] + h ¿ |/}| ( .    D

This result is included in Theorems 2.1 and 3.1 of [12].  We first observe that

if we can show convergence for some special initial values u^, ..., uk_x in the ab-

sence of round-off errors (r   = 0), then the general case can be obtained from (10).

Theorem 2. Assume that (7), (8) and (9) hold.  Let A be maximally mono-

tone and u the solution of (2). Set u* = (I + hA)~1u0 for j = 0, ..., k - 1, and

let {uhn} satisfy (3).   Then, for all T<°°,

(11) sup       \u(nh) -u*\ —> 0    ash-+0.    D
0<n<77i-l

The proof of Theorem 2 will give us the following additional result.

Corollary 1. If, in addition to the assumptions of Theorem 2, u0 E D(A),

then for all T <°°, h <°°

(12) sup     |«(/iA)-«*|<C|i4i.0|{Ä + P^h1'2 + [T+ T1'2]^^},
0<n<T/h

with C depending only on the method (p, o).  D

For the implicit Euler method ("Rothe method"), applied to a class of nonlin-

ear initial boundary value problems Kacur [8] has obtained a convergence order

0(h} ¡2). Recall that if the solutions are in C1, then Theorem 1 implies the conver-

gence order 0(h).

The next example shows that the assumption u0 E D(A) in Corollary 1 is es-

sential for getting the convergence order 0(/.1/3)-   Let 77 = R and put Au - -ul~s

for u > 0 and s > 1.   Then u(t) = x1 ̂ t1 ls is the solution of u  + Au = 0 with u(0)

= 0.   But the implicit Euler method,

ft"1(«„+1-«„)-("n+i)1_s = o.
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with the exact initial value u0 = 0yieldsw, = hlls. Hence \u(h) - ux | = (s1^ - l)h1/s

for the exact initial value, and for the one of Theorem 2, uf¡) = (I + hA)~10 = h1^,

we have |u(0)-«*| = h1'5.

Theorem 3. If in addition to the assumptions of Theorem 2

(13) u(t)-+c   as t —*°°,

then

(14) sup \u(nh) -uHn\ —> 0   as h-+0.    D
n>0

It is shown in [3] that if A = di¿> and <p(-u) = <p(u) for all u then (13) holds.

Another sufficient condition is that 0 E 7<(9i¿>) and the set {u EH\ \u\<M, <#(ú) < M)

is compact for all M < °° [1, p. 90].   Finally, note that if ^4 - cJ is monotone for

some a > 0, then u(t) tends exponentially to the unique solution of 0 = Ac.

Consider the assumptions on (p, a).  The (algebraic) consistency conditions (7)

are certainly necessary for the convergence (11).  We shall now demonstrate that also

the assumption (8) is necessary.   Methods satisfying (8) are called A -stable [5].  If

(8) does not hold, then there exists a q E C with Re q < 0 such that the equation

P($) - q<j(0 = 0

has at least one solution f = £ satisfying |£| > 1.   Hence, the difference equation

P(E}nn = r\ha(E)rin

has, for \h = q and for initial values n- = £;x, / = 0, ..., k - 1, the solution t?„ =

£"x.   Let I2 be the (complex) Hilbert space of sequences x = (xM)M>0, with xM E C

and (x, y) = 2M>0yMxM, and let A be the operator mapping (xM) to (XMxM).  Then

the solutions of

h~lp(Eyxn = a(E)Axn

satisfy

p(E)x»n = h\a(E)x^n.

Put x0 = (ju_0;) with a > 2 and choose \ß = qp.  Then Ax0 E I2 and hence x0 E

D(A).  Now choose a sequence hß tending to zero by setting h   = p~x.  Then, for

all n

ixj2> iixjioo^nrxi.

Th ~^
But, as AM -+ 0, HI    M   |x£| = (|£|7Y/i~a -*■ °° and therefore,

WxTh_x -x(r)||2-+oo    asAMIO.
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The assumption (9), on the contrary, seems to be a technical one.  A practical

method excluded by (9) is the trapezoidal rule

(15) h-1(uH„+1-uH„) + K(Au*+l+Au*) = 0,     n>0.

Theorem 4.  Let A be maximally monotone and u the solution of (2). Set

Uq = (I + hA/2Y~1u0, then for all h > 0 a unique {uhn) C D(A) exists satisfying (15),

and for all T <°° (11) holds.  Moreover, we have (14) whenever (13) holds.   D

It is natural to ask whether we could relax (9) by approximating the unbounded

operator A by a Lipschitz-continuous operator and obtain conditionally convergent

methods.   In order to state a result of this type we introduce some notation.   If A is

maximally monotone, then the operator

JK = (I + \A)~1,      X>0,

is a contraction defined for all x E H; and therefore, the operator

¿x = ^l(I-h)

referred to as the Yosida approximation of A, is Lipschitz-continuous.  We shall also

need the concept of stability region of a method (p, a) which is defined to be the set

S of complex numbers q for which the characteristic polynomial p(f) - qo(Ç) satisfies

the root condition, i.e. its roots satisfy IfJ < 1 and those of modulus one are simple.

Our stability assumption on the method (p, o) is

(16) there exists r > 0 such that {z E C| \z + r\ < r] C S.

It can be shown that (16) holds for all stable methods (p, a) which are not "weakly

stable" (defined in terms of the growth parameters; G. Dahlquist, personal communi-

cation).

We shall approximate the solution of (2) by the scheme

(17) h~*P(EKn + ^MX<„ =0,      n > 0.

Note that since AK is Lipschitz-continuous with the constant 1/X, (17) has a unique

solution {u* n] C H, whenever h¡\ is small enough, for all given {w£ 0, ...,«* k.}

CH.

Theorem 5.  Suppose that the method (p, a) satisfies (7) and (16).  Let A be

maximally monotone and u the solution of (2), with u0 E D(A).  Set »£ ■ = u0 for

j = 0, ..., k - 1, and suppose {m* n) satisfies (17).  Assume that for a given c > 0,

we have X2 > ch.   Then there exist constants X0 = X0(p, a, c) > 0 and C =

C(p, a, T, c) such that if\E (0, A0), then

(18) sup     \u(nh)-uhXn\<C\Au0\{(hl\) + X1/2}.   D
0<n<T/h

We finally point out that (16) cannot be replaced by just assuming that p is

stable, that is 0 G S.   Consider the "leap-frog" method (p, a) = (f2 - 1, 2f) for which



326 OLAVI NEVANLINNA

S is the open interval (~i, i).  This method can be used as a basis for conditionally

stable schemes for some linear hyperbolic equations.   Let 77 be the real Hubert space

I2 of square summable sequences (xM)M>0 an(* let ^ De tne linear operator (xM) —►

(aMxM) with a > 1.   Hence Ax is the operator (xM) —> (aM(l + XcvM)_1xM).  It is

easily seen that there exist initial values xQ, xx, depending on X and h but uniformly

bounded, such that Ilxr,ft||2 —► °° as X, h —>• 0.

3.   Proof of Theorem 2.  We first show that if the Theorem 2 is true for all

«0 6 D(A), the general case will follow.   Assume, therefore, that uQ E D(A) and fix

e > 0.  Pick a v0 E D(A) so that |«0 - u01 < e.  Then due to the contraction prop-

erty of the solutions, we have

(19) Wt)-v(t)\<\u0-v0\<e   foxt>0.

For \u^ - u*| we get from Theorem 1

(20) K-i%\<C{\u*-vP0\ + h\Au*-Ai%\}    Xoxn>0,h>0.

(C will denote a constant which is independent on n, h, X, T but not necessarily the

same at each occurrence.)

We recall some well-known properties of the resolvent Jx = (7 + X^4)-1 and the

Yosida approximation Ax = (1/X)(7 -Jx), of a maximally monotone operator A:

(i)   \Axx\ t \Ax\ and Axx -* Ax for x E D(A) as X i 0,

(ii)   \Axx\ Î °° for x é D(/l) as X 4 0,

(iii) ^x = A/Xx for all x E 77, X > 0.

Since Jx is a contraction for X > 0,^4x is (maximally monotone, and) Lipschitz-con-

tinuous with constant 1/X.

Using (iii), we get

h\Auh0 - Avh0\ = h\AJhu0 - AJhv0\ = h\AhuQ -i4Äu0|< \u0 -u0|<e.

Substituting this into (20) yields

(21) \uhn - vhn\ < 2Ce     for all n > 0, h > 0.

Suppose now that Theorem 2 holds for all v0 E D(A) so that

sup     \v(nh) - v* | —* 0    as h I 0.
0<n<T/h

Fix h0 so that

|u(«Ä)-uJ|<e    fox0<h<h0,0<n<T/h.

Then, for 0 < h < hQ,
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sup     \u(nh) - u^\
0<n<T/h

< \u(nh) - v(nh)\ + \v(nh) - vhn\+ \vhn-uhn\< e + e + 2Ce,

which completes the reduction.

From now on we assume that uQ E D(A).  We intend to use the known con-

vergence for Lipschitz-continuous problems.  The latter is well known; it also follows

easily from (10), with un = uhn, vn = u(nh), and with {qn} = {t^} representing the

local discretization errors which are sufficiently small because solutions to Lipschitz-

continuous problems are continuously differentiable.  In fact, replace A by Ax and

denote the solutions of the differential and the difference equation by ux(t) and ux n

respectively.  Then {tx „} is defined by

(22) fc-i p(E)ux(nh) + a(E)Axux(nh) = rhXn    for n > 0, h, X > 0.

Using the mean-value theorem and the fact that \Axux(t)\ < \Axux(0)\ (see Theorem

3.1 in [1]), we have

(23) It*, J < C(iVX)|4Ä(0)|,

with C depending only on (p, a).  We shall put ux(0) = uQ and ux • = u*¿ for / =

0.k - 1.   Then (10) gives us

(24) \ux(nh) - «£j < c\\u0 - uh0\ + h\Axu0-Axuh0\ + «t^A

But \u0 -Wq| = |m0 -Jhu0\ = h\Au0\ and h\Axu0 -Axu^\< 2h\Au0\, so that (23)

and (24) yield

(25) \ux(nh) - uhXn |< C{1 + (T/X)}\Au0\h,       0 < n < T/h.

For \u(t) - ux(t)\ the following bound is given in [1, p. 56] :

(26) \u(t)-ux(t)\<(Uy/2)\Au0\y/Çkt),      t > 0.

In order to obtain the convergence of uhn we also need a bound for \uhn - ux   \.  We

start with the equation

(27) h-'p^Xu* - uhXn) + o(E)(Auhn - Axu'ln) = 0,      n > 0.

Define ux n = uhn = u^ for n < 0, and denote -Auhn + Axux n = z„.  Then we have

for all n E Z

(28) h-1p(E)(uh„-u1n) = pn,

with pn = 0 for n < 0 and pn = a(E)zn for n > 0.
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By assumption (9), o(f)_1p(f) is analytic in some neighborhood of the unit cir-

cle and has an expansion a(f)_1p(?) ~ T0 + 7i?_1 + ^2^2 + " ' with 7 = ÍT«) e

r.   Hence, (28) implies

(29) ^Iv/"/-</) = ^    for«>0,
/-o

where wn is obtained by solving

o(E)wn = a(£")z„    for n > 0,

vvn = 0 for n < 0,

a(7i')wn =0 for n < 0.

Hence, wn = z„ + rn, where

and

so that

z„ = ->lw* + ^,m? „n n K   K,n

\r„\ < Crn  max  |z,-|    with some r < 1,
0«/<fc    '

¿ |r„| < CMifJ -AxuH0\ < 2CUu0|
o

Multiplying (29) by h(u^ - w£ n) and summing yields

«=o\ /=o /

(30)

= -h £ («J - <„, ^«* -¿x«4.„) + A £ («* - »M- '„)•
n=0 n=0

It is shown in the proof of Theorem 3.1 in [12], that the left-hand side of (30) can

be bounded from below by 8\u^ - ux N\2, with ô > 0 depending only on the method

(p, o).  We shall consider the right-hand side of (30).   Put vn = uh0 and use (10).   For

n<Th~1 we then get

\uhKn-uh0\<Cht\Axuh0\<CT\Au0\,

/=*

where we also used (i) and (iii).  Similarly, we get the uniform boundedness for {«^}.

Hence,
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(31) h £ (u* - «* „, r„) < CT|.4Uo|2,z,      TV < 77T1.
11 = 0

To bound the first term in the right-hand side of (30) write Jxx = x - XAxx. Since

A is monotone, we have (AJxx - Ay, Jxx - y) > 0; and using also ^4xx = AJxx, we

get

(32) (Axx -Ay,x-y)> \\Axx\2 - \(Ay, Axx) > -\ \Ay\2.

Hence,

(33) hí(uhn-uhXn,Auhn -AxuXn)>-\h £ \Auhn\2.
0 ¿     71=0

We show that

(34) \Auhn\<C\Au0\,      n>0,h>0.

Apply (10) with un — uhn and vn = uhn+ x.  Then

(35) \uhn+x -uhn\<C{\uhk-uhQ\ + h\AuHk-Auh0\}     for all n > 0.

Suppose we normalize: ak = 1 and put ßk = ß.  Then uk is given by

(36) u\ + hß^u* =uh0- h(o(l) - ßk)Auh0 =f v".

From ^-stability (8) it follows that ß > 0.   Hence,

Thus, using (i)—(iii), and writing Jxx —x = XAxx,

\uk-u»\<\Jhßvn-vH\ + \vh-u*\

< hß\Anßvh\ + h\o(l) - ß\\Auh0\

< Aßl^u* ~Ahßu0\ + hß\Ahßu0\ + h\o(l) - ß\ \Ahu0\

<\v" -u0\ + h[2ß+ \o(l)\]\Au0\

< |ii* - «0| + Ä|o(l) - ßl \Au0\ + h[2ß+ \o(l)\]\Au0\

<h{l +3ß + 2\o(l)\] \Au0\ = C\Au0\h.

From (36) we then also obtain hßk\Auk\ < C\AuQ\h.   Substituting these into (35)

gives

K + i -uh„\<C\Au0\h
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and, hence,

\p(E)un\<QAu0\h    for all «>0.

This give us

(37) \o(E)Au*\ < C[Au0\    for all n > 0.

But (8) and (9) imply that the roots of a(f) he strictly inside the unit circle and,

therefore, (37) implies (34).   Summarizing (30), (31), (33) and (34) we have

«l«îv- -<jvI2 < CT\Au0\2h + |fc£H^I2

< CT\Au0\2(h + X),      N<T/h;

and since ô > 0,

(38) \u»-ul„\<C\Au0\s/[T(h + 'r\)],      0 < n < T/h; h, X > 0.

Combining (25), (26) and (38) we thus have

\u(nh) - uh„\ < \u(nh) - ux(nh)\ + \ux(nh) ~ uhx n\ + \uhx n - uhn\

(39)
< C\Au0\{\/(T\) + h + Th/X + yJ[T(h + X)]},

which then implies (11) and completes the proof.   Corollary 1 follows if in (39) we

substitute h2/3 for X = X(h).

4.   Proof of Theorem 3.  We shall assume that u0 E D(A).  The general case

follows as in the proof of Theorem 2, since the bounds (19) and (21) are independent

of T.

Let c EA _10 be such that u(t) —► c (strongly) as t —► °°.  Put vn = c for all

n > 0 and un = uhn + N.  Then Theorem 1 gives us

(40) \uhn-c\<c\ max   [\uN+j-c\ + h\AuhN+l-\]\     for n > TV.
I0^/< k l

Together with (34) this gives

(41) \uhn - c\ < C max  \uN,¡ - c\ + Ch\AuA    for n > TV.
\     j n 0</'<ic ' °

Fix e > 0 and take T < °° so that

(42) KO -c\<e    Xoxt>T.

Choose h0 < l/k such that, by Theorem 2,

(43) \u(nh) - uhn\< e    Xoxnh<T+2 for h < hQ.
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Put TV = [T/h] + 1.   For mh > T we then have

\u(mh) ~um\< \u(mh) -c\ + \c-um\

<e + C max  |u* ,, - c\ + Ch\Aun\.
0<j<k ' °

But using (42) and (43), we get

\uN+j -c\< \uhN+j - «((TV + j)h)\ + \u((N + j)h) -c\< 2e;

and hence,

(44) \u(mh) - uhm \< (2C + l)e + Ch\Au0\,      mh > T;

and the conclusion follows.

5. Proof of Theorem 4. For the trapezoidal rule we do not have a bound of

the form (10); but we shall overcome this difficulty by considering a closely related

method, the implicit midpoint rule

(45) A"1(^+1-^)+^(""+12+"")=0    for«>0.

Existence and uniqueness of a solution {«*} is obtained as follows:   Write (45) in the

form

(46) v„ + h~Avn = uhn,

with uhn given and vn (= xA(uhl+x + w*)) unknown.  But then vn = Jh¡2uhn E D(A)

and the process may be continued.   Further,

»n+l-Vn=Ù"+2~Ù"=-kAvn+x+Avn)

so that {vn} satisfies (15) with the initial value u0 = Jh ,2Üq E DiA).  On the other

hand, (15) has a unique solution {«*} C DiA) for all u^ E DiA) since

<+1 = 4/2 K + \a¿A E DiA)    for all n > 0.

Hence we have reduced our problem to showing that, with u0 = uQ,

sup     \uinh) - unn\-+0   as h 4-0;
0<n<Tjh

and that if (13) holds, then

sup \uinh) - w„l —^ 0    as h I 0.
n>0
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Convergence for

^ = (»»+i+5*)/2

will follow since u(t) is uniformly continuous on compact sets [0, T] and, assuming

(13), on the half Une t > 0.

For notational simplicity, consider the solutions {x„}, {yn} of the equations

(47)

(48)

^n+1-*J + ^*"+12+*") = o,

Forming the difference of (47) and (48), multiplying it by Vt(xn + x - yn+ x - xn + yn),

and using the monotonicity of A yields

(49) ^n+l-^+lK^-^-       n>0-

Applying (49) with yn = xn+, gives

(50) I|xn+l  + xn
<h    \xx -x0\ = \Ah¡2x0\ < \Ax0\.

Denote by xx n the solution of (47) with A replaced by Ax and xx 0 = xQ.  Multi-

plying

11+1       ~n

*n + i  -*X,n+i  -*n+*,,n + * \M ,       "     - AA     — ' "'"        = 0
+ xn\ _ A   ( X\,n+l  +X\,n]

by^{xn+1 -xXn+1 +xn -xx „}, we get, using (32), and (50),

l^n _x\,«l ^ I^4jc0|V(X«^)    for n > 0,

that is,

(51) \uhn-Ûln\<\Au0W(Xnh)    foxn>0;X,h>0.

Since the implicit midpoint rule is a convergent method (for Lipschitz-continuous

problems on compact intervals [0, T] ) the proof of the reduced problem can now be

completed as in the earlier chapters, using (51), and (49) or

(52) HC+i-£+il<l*5-il

in place of (38) and (10).

Remark.   The implicit midpoint rule is the one-leg method associated with the

trapezoidal rule, [6].   A generalization of Theorem 4 to all G-stable [6] methods is

straightforward but since the trapezoidal rule is the only practically important method

which does not satisfy (9) we do not want to introduce the machinery needed.
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However, if the conjecture that .4-stability implies G-stability (see [7]) is correct, then

some parts of the proof of Theorem 2 could be simplified.  The analogue of Theorem

1 for G-stable one-leg methods has been given in [11], with a more direct proof than

in [10].

6.   Proof of Theorem 5.  Put a - ~l/r, where r is given by (16).  Assume that

0(7 + ahAA   1 is Lipschitz-continuous with constant L = L(X, h) < °° and that

AX(I + ahAx)  1 - a! is maximally monotone with a = a(X, h) > -°°.  Then we ob-

tain, using line (3.23) in [12], that for C, b > 0 depending only on (p, a),

K,n - «jv(«A)I < CL(\ h)il - KX h)\hb)-^1 + T^2h

(53) Í    T,h )

• ]hZ Kn\+ n^AK-ux^)\ + h\Axu0-Axux(jh)\]\.
(    n=k UN<" |

From (23) we obtain \tx n\ < C(h/X)\Au0\ and, therefore,

T/h

hZ \r^n\<CT\Au0\(h/X).
n=k

Since \Axuxit)\ is nonincreasing in r, we also have

max [|w0 -uxijh)\ + h\Axu0 -Axux(jh)\]
0<j<k

<ik- l)h\Axu0\ + h\Axu0\ + h\Axu0\ <ik+ l)h\Au0\.

Thus, (53) is of the form

(54) \uxinh)-ulJ<CLi\h){l-W\h)\bh}-(1 + TV2h\Au0\\h + ^l

Since j4j^ is Lipschitz-continuous with constant 1/X, we have 7,(X, h) < (1 - \a\h/X)~1

—>■ 1 if h/X —*■ 0.  To estimate a(X, h) from below, put x = (7 + ahAx)~1u and

y = (7 + ahAx)~1v.  Then

iAxiI + ahAA^u -AX(I + ahA-J^v, u - v)

= (Axx ~Axy, x -y) + ah(Axx ~Axy, Axx ~Axy)

>ah\Axx ~Axy\2 > iah/X2)\x -y\2 > ahiLi\ h)/X)2\u - v\2,

so that

KXi^KKfcp^]  ¡slal/c

if X ; 0 with X2 > ch; and we conclude that {1 - |a(X, h)\bh} -O/î/iXi+r) remains

bounded for X small, X < X0 say.
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Summarizing (54) and (26), we have for nh < T,

\u(nh) - uhxJ < \u(nh) - ux(nh)\ + \ux(nh) - uHxJ

<C(X0, T)\Au0\{X1Á +h + h/X},

which completes the proof.
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