Reviews and Descriptions of Tables and Books
Journal:
Math. Comp. 32 (1978), 651-659
DOI:
https://doi.org/10.1090/S0025-5718-78-99983-0
Full-text PDF Free Access
References | Additional Information
- [1] S. L. Sobolev, Applications of functional analysis in mathematical physics, Translated from the Russian by F. E. Browder. Translations of Mathematical Monographs, Vol. 7, American Mathematical Society, Providence, R.I., 1963. MR 0165337
- [2] J. L. LIONS & E. MAGENES, Non Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, New York, 1972.
- [3] Jean-Pierre Aubin, Approximation of elliptic boundary-value problems, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1972. Pure and Applied Mathematics, Vol. XXVI. MR 0478662
- [4] Eugene L. Wachspress, A rational finite element basis, Academic Press, Inc. [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Mathematics in Science and Engineering, Vol. 114. MR 0426460
- [5] J. NEČAS, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris 1967.
- [1] Jack Levine and R. E. Dalton, Minimum periods, modulo 𝑝, of first-order Bell exponential integers, Math. Comp. 16 (1962), 416–423. MR 148604, https://doi.org/10.1090/S0025-5718-1962-0148604-2
- [2] H. W. BECKER, "Solution of Problem E 461", Amer. Math. Monthly, v. 48, 1941, pp. 701-703.
- [1]
N. G. W. H. BEEGER, "On a new case of the congruence
," Messenger of Math., v. 51, 1922, pp. 149-150. Jbuch 48, 1154.
- [2]
N. G. W. H. BEEGER, "On the congruence
and Fermat's last theorem," Messenger of Math., v. 55, 1925/26, pp. 17-26. Jbuch 51, 127.
- [3] R. Ernvall and T. Metsänkylä, Cyclotomic invariants and 𝐸-irregular primes, Math. Comp. 32 (1978), no. 142, 617–629. MR 482273, https://doi.org/10.1090/S0025-5718-1978-0482273-9
- [4]
R. HAUSSNER, "Reste von
nach dem Teiler
für alle Primzahlen bis 10009," Arch. Math. Naturvid., v. 39, 1925, 17 pp. Jbuch 51, 128.
- [5] A. E. Western and J. C. P. Miller, Tables of indices and primitive roots, Royal Society Mathematical Tables, Vol. 9, Published for the Royal Society at the Cambridge University Press, London, 1968. MR 0246488
- [1] M. KRAITCHIK, Théorie des Nombres, t. 3, Analyse Diophantine et Applications aux Cuboides Rationnels, Gauthier-Villars, Paris, 1947.
- [2] M. KRAITCHIK, "Sur les cuboides rationnels," in Proc. Internat. Congr. Math., vol. 2, North-Holland, Amsterdam, 1954, pp. 33-34.
- [3] M. Lal and W. J. Blundon, Solutions of the Diophantine equations 𝑥²+𝑦²=𝑙²,𝑦²+𝑧²=𝑚²,𝑧²+𝑥²=𝑛². endx, Math. Comp. 20 (1966), 144–147. MR 186623, https://doi.org/10.1090/S0025-5718-1966-0186623-4
- [4] John Leech, The location of four squares in an arithmetic progression, with some applications, Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969) Academic Press, London, 1971, pp. 83–98. MR 0316366
- [5] John Leech, The rational cuboid revisited, Amer. Math. Monthly 84 (1977), no. 7, 518–533. MR 447106, https://doi.org/10.2307/2320014
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-78-99983-0
Article copyright:
© Copyright 1978
American Mathematical Society