Reviews and Descriptions of Tables and Books
HTML articles powered by AMS MathViewer
- by PDF
- Math. Comp. 32 (1978), 651-659 Request permission
References
- S. L. Sobolev, Applications of functional analysis in mathematical physics, Translations of Mathematical Monographs, Vol. 7, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by F. E. Browder. MR 0165337, DOI 10.1090/mmono/007 J. L. LIONS & E. MAGENES, Non Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, New York, 1972.
- Jean-Pierre Aubin, Approximation of elliptic boundary-value problems, Pure and Applied Mathematics, Vol. XXVI, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1972. MR 0478662
- Eugene L. Wachspress, A rational finite element basis, Mathematics in Science and Engineering, Vol. 114, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0426460 J. NEČAS, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris 1967.
- Jack Levine and R. E. Dalton, Minimum periods, modulo $p$, of first-order Bell exponential integers, Math. Comp. 16 (1962), 416–423. MR 148604, DOI 10.1090/S0025-5718-1962-0148604-2 H. W. BECKER, "Solution of Problem E 461", Amer. Math. Monthly, v. 48, 1941, pp. 701-703. N. G. W. H. BEEGER, "On a new case of the congruence ${2^{p - 1}} \equiv 1\;\pmod {p^2}$," Messenger of Math., v. 51, 1922, pp. 149-150. Jbuch 48, 1154. N. G. W. H. BEEGER, "On the congruence ${2^{p - 1}} \equiv 1\;\pmod {p^2}$ and Fermat’s last theorem," Messenger of Math., v. 55, 1925/26, pp. 17-26. Jbuch 51, 127.
- R. Ernvall and T. Metsänkylä, Cyclotomic invariants and $E$-irregular primes, Math. Comp. 32 (1978), no. 142, 617–629. MR 482273, DOI 10.1090/S0025-5718-1978-0482273-9 R. HAUSSNER, "Reste von ${2^{p - 1}} - 1$ nach dem Teiler ${p^2}$ für alle Primzahlen bis 10009," Arch. Math. Naturvid., v. 39, 1925, 17 pp. Jbuch 51, 128.
- A. E. Western and J. C. P. Miller, Tables of indices and primitive roots, Royal Society Mathematical Tables, Vol. 9, Published for the Royal Society at the Cambridge University Press, London 1968. MR 0246488 M. KRAITCHIK, Théorie des Nombres, t. 3, Analyse Diophantine et Applications aux Cuboides Rationnels, Gauthier-Villars, Paris, 1947. M. KRAITCHIK, "Sur les cuboides rationnels," in Proc. Internat. Congr. Math., vol. 2, North-Holland, Amsterdam, 1954, pp. 33-34.
- M. Lal and W. J. Blundon, Solutions of the Diophantine equations $x^{2}+y^{2}=l^{2},\,y^{2}+z^{2}=m^{2},\,z^{2}+x^{2}=n^{2}$. endx, Math. Comp. 20 (1966), 144–147. MR 186623, DOI 10.1090/S0025-5718-1966-0186623-4
- John Leech, The location of four squares in an arithmetic progression, with some applications, Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969) Academic Press, London, 1971, pp. 83–98. MR 0316366
- John Leech, The rational cuboid revisited, Amer. Math. Monthly 84 (1977), no. 7, 518–533. MR 447106, DOI 10.2307/2320014
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Math. Comp. 32 (1978), 651-659
- DOI: https://doi.org/10.1090/S0025-5718-78-99983-0