Some results on the global inversion of bilinear and quadratic isoparametric finite element transformations
HTML articles powered by AMS MathViewer
- by A. E. Frey, C. A. Hall and T. A. Porsching PDF
- Math. Comp. 32 (1978), 725-749 Request permission
Abstract:
This paper contains sufficient conditions under which a map whose domain is a compact set is a bijection onto a given set. Relative to certain isoparametric finite element maps, one set of conditions involves the nonvanishing of the Jacobian; another the notion of overspill. An algorithm based on elimination is given for the numerical inversion of these maps.References
- R. Creighton Buck, Advanced calculus, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1956. MR 0089871
- P. G. Ciarlet and P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element methods, Comput. Methods Appl. Mech. Engrg. 1 (1972), 217–249. MR 375801, DOI 10.1016/0045-7825(72)90006-0 I. ERGATOUDIS, B. IRONS & O. ZIENKIEWICZ, "Curved isoparametric, "quadrilateral" elements for finite element analysis," Internat. J. Solids and Structures, v. 4, 1968, pp. 31-42.
- Watson Fulks, Advanced Calculus: An introduction to analysis, John Wiley & Sons, Inc., New York-London, 1961. MR 0122922
- William J. Gordon and Charles A. Hall, Transfinite element methods: blending-function interpolation over arbitrary curved element domains, Numer. Math. 21 (1973/74), 109–129. MR 381234, DOI 10.1007/BF01436298
- A. S. Householder, Bigradients and the problem of Routh and Hurwitz, SIAM Rev. 10 (1968), 56–66. MR 229805, DOI 10.1137/1010003
- J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York-London, 1970. MR 0273810
- Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. MR 0443377 C. J. de la VALLEE POUSSIN, Cours d’Analyse Infinitesimale, vol. 1, Gauthier-Villars, Paris, 1926.
- O. C. Zienkiewicz, The finite element method in engineering science, McGraw-Hill, London-New York-Düsseldorf, 1971. The second, expanded and revised, edition of The finite element method in structural and continuum mechanics. MR 0315970
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Math. Comp. 32 (1978), 725-749
- MSC: Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1978-0474877-4
- MathSciNet review: 0474877