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A Necessary Condition for the Stability of a

Difference Approximation to a Hyperbolic System

of Partial Differential Equations

By Anne M. Burns

Abstract.   We are interested in the boundary conditions for a difference approxima-

tion to a hyperbolic system of partial differential equations u{ = Aux, u(x, 0) =

Fix), Ku(0, t) = 0 in the quarter plane x > 0, t > 0.

We consider approximations of the type:

P

ufit + Af)=    £    Ckuj+k(t),       /= 1,2, ....
k=-r

s

uj + 53   ajkuk^ + Af) = 0,       / = -r + 1, . . . , o.
fc=l

If AT is the null space of K and E is the "negative" eigenspace of A, then the system of

partial differential equations is well-posed if and only it K D E = {o} and Rank K =

the number of negative eigenvalues of A.

In direct analogy to this, we prove that for a difference scheme of the above

type with r = p = I, K' = I + £^_j ak and N' = null space of K', a necessary condi-

tion for stability is N1 Oi = {o}.   If, in addition, a condition proven by S. J. Osher

to be sufficient for stability is not satisfied, then Rank K = the number of negative

eigenvalues of A is also necessary for stability.   We then generalize this result to the

case r > 1, p > 1.

Together these conditions imply that "extrapolation" on "negative" eigenvec-

tors leads to instability; "extrapolation" on "positive" eigenvectors is "almost neces-

sary. "Extrapolation" on "positive" eigenvectors and not on "negative" eigenvectors

is sufficient for stability.

1.  Introduction.  Here we consider the problem of finding the correct boundary

conditions for a difference approximation to the hyperbolic system of partial differ-

ential equations:

(1-1) ut=Aux,

(1-2) u(x, 0)=F(x),

(13) KuiO, t) = Git),

in the quarter plane x > 0, t > 0, where A is a constant, symmetric n x n matrix

with eigenvalues ax < • ■ • < am < 0 < am+ x < • • • < an and A' is a constant n x n

matrix.
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A necessary and sufficient condition for the problem to be well-posed is

(i)  Rank K = m = the number of negative eigenvalues of A, and

(ii) N n E = {0} where N is the null space of K and E is the "negative"

eigenspace of A, that is, the m-dimensional subspace of C" spanned by the eigen-

vectors of A which correspond to the negative eigenvalues of A.  (See Hersh [2].)

Introduce a mesh width Ax > 0 and a time step Ar > 0; divide the x-axis into

subintervals of length Ax, the f-axis into subintervals of length Ar, and assume the

ratio r = At/Ax remains constant.

Let u (?) = u(jAx, t) be an n x 1 vector function of x and t:

uj(t) = (ujx\t),...,uj"\t))t.

For simplicity, we begin by considering a particular class of difference approxi-

mations to (1.1):

(1.4) Ujit + At)=   £    Ckuj+kit),      /=1,2,...,
k=-l

(1.5) uji0)=fj,

where the Cks are constant n x n matrices which depend on A and Ar.   For example,

the Lax-Wendroff Scheme :

Uj(t + At) = uf(t) + \ -^A(uf+X(t) - Uj_x(t))

\A2(uj+x(t)-2uj(t) + u¡_x(t)).

Even in this case where there is only one backward step, we see that in con-

trast to the partial differential equation where m boundary conditions are required,

here to solve the difference scheme at each time step, we require n boundary condi-

tions.  They will be given by:

(1.6) ¿  akuk(t + At) = 0,
k=0

where the ak's are constant n x n matrices and a0 = I.

The problem, then, is what are the proper extra n - m boundary conditions.

The requirement of consistency suggests using extrapolation at the boundary:

using a Taylor series expansion in powers of Ax to determine the afc's.  (Shortly, we

shall be more precise.)

Let K' = 2Jt=o ak an(^ E be the "negative" eigenspace of A.

Then in this paper we shall show that a necessary condition for stability is

K' n E = {0}.  If, in addition, a certain algebraic condition shown by Osher in [6]

and Kreiss in [3] is not satisfied, then it is also necessary that Rank K' = m = the

number of negative eigenvalues of A.   We shall show how this relates to extrapolating

at the boundary and how the result is extended to a more general class of difference

schemes.

+
1    At

2 \Ax
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2.  Some Preliminary Notions.   Let H be the Hilbert space of sequences w =

{Wj}, Wj = (wjx), . . ., wjn)y,j = 0, 1, 2, ... , such that 2tl0 \Wj\2 < °° where

Wj • Vj = 2"=1 wj^vj" \Wj\2 = Wj • Wpwith scalar product (w, v) = (2JL0 w¡ • v;)Ax

and norm llvvll2 = (w, w).

Let S be the operator on H defined by

i
iSw)j =   23   ckwj+k>      j =1,2, ... ,

k=-l

iSw)0=~ ¿  akiSw)k.
k=l

Then we can write the difference approximation (1.4), (1.5), (1.6) in operator form:

uit + At) = iSu)it) = iSnu)iO).

Let v(x, t) be the genuine solution to the differential equation (1.1), (1.2),

(1.3) for some smooth initial function /, where /= {fQAx)} E H   Let v'it) =

{7ft)} = {viJAx, t)}.  Then 7(r) E H.
By convergence of the difference scheme to the solution of the partial differen-

tial equation we mean:

There exists a sequence A-r —► 0 and a sequence of integers n• such that «,-Ar

—► t as / —► °° and IIS"/(A/f)v'(0) - vit)\\ —> 0 as / —► <».

(2.1) Definition.   The difference scheme is a consistent approximation to the

differential equation if for any smooth solution v(x, t) of (1.1), (1.2), (1.3)

v(r + At)~iSv)it)

At
0   as Ai —► 0 for t < T.

(2.2) Definition.   The difference scheme (1.4), (1.5), (1.6) is stable if there

exists 6 > 0 and a constant k > 0 such that II5"" II < k when 0 < Ar < S and 0 <

mAt < T.

Then the well-known Lax-Richtmyer Theorem states that for a consistent dif-

ference approximation stability is equivalent to convergence.

Now we are in a position to see why consistency suggests extrapolating at the

boundary.

Consistency (2.1) implies that for all / and any genuine solution of the partial

differential equation:

ujjt + Ar) - tfu)fit)
At

In particular,

23  akukit + At) = OUAt)2) = OUAx)2).
k = 0

For example, in the scalar case with s = 2:
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u0 + axux + a2u2 =u0 + axiu0 + Axiux)0) + a2(w0 + (2Ax)iux)0)

- OUAx)2)

yields u0 - 2ux + u2 =0.

An important fact which will be used later is:   if the boundary conditions

2fc=0 akuk = OiiAxf), then p = 1 is a root of the polynomial 2fc=0 akpk = 0 of

multiplicity s.

Now consider the matrix case, n > 2.  We shall say we are extrapolating on the

vector <p if the ak's satisfy 2k=0 akwikAx)<p = 0((Ax)s) for a sufficiently differen-

tiate scalar function wix).  In the following example we extrapolate on the vector

(1,0/:

"o +

2     0
"i +

1      0

y_k3    k4j
u2 = 0.

Extrapolating on a vector </> implies that K'<t> = 2fc=0 oik<j> = 0.

We now restate our main result:   Under certain assumptions which are necessary

for the stability of the Cauchy problem, if </> E E, then a necessary condition for sta-

bility is (2fc=0 ak)<p i= 0 or equivalently N* n E = {0}, where N1 is the null space of

K - 2fc=0 ak.

This gives us rank K > m.   If, in addition, we assume that 5 has an eigenvalue

z = 1, then it is also necessary that rank K = m.

In other words we cannot extrapolate on the "negative" eigenvectors of A   In

fact, we shall show that the higher the order of extrapolation on negative eigenvectors

of A the more unstable the scheme.   If S has an eigenvalue at z = 1, we obtain in-

stability unless we do extrapolate on the "positive" eigenvectors of A.

3.  The (Generalized) Eigenvalues of S.  In the proof of the Main Theorem we

require some knowledge about the eigenvalues of S.

In addition to the consistency of the scheme we make the following assump-

tions:

(3.1) The Cauchy problem is stable.  In particular, this implies the von Neu-

mann condition:   for lui = 1 the eigenvalues z of £fc__, Ckpk satisfy Izl < 1.

(3.2) The Ck's are polynomials in A with coefficients which are functions of

Ar.   (See again the Lax-Wendroff scheme.)  This implies that the eigenvectors of

2fc=_j Ckpk are the eigenvectors of A, for pE C.

If z is an eigenvalue of S, then there exists u EH such that

(3.3) 23 ckuj+k
k=-l

ZU; 0,      j =1,2,

(3.4) z"o =- Z   akiSu)k-
fc=i

It is well known that the general solution in H to (3.3) for Izl > 1 is
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Uj = Ujiz) =     23      °iPiiz)<t>i,
lM,.Kl

where p¡(z) are the solutions to

(3.5) Det/ 23    Cfeuk-z/j = 0,

which Ue inside the unit circle and the 0(. satisfy

(3.6) 23   Ckrf4>, = z<l>t.
fc=-i

By (3.2) the 0f must be eigenvectors of A   For convenience we make the following

assumption

(3.7) Cx and C_x are nonsingular    (see Lax-Wendroff).

Lemma 1.   Under assumptions (3.1), (3.2), (3.7) and consistency:

(a) For Izl > 1 there are 2n solutions p(z) to (3.5); n of them satisfy \piz)\

< 1 and n of them satisfy \piz)\ > 1.  They are analytic functions of z except pos-

sibly at branch points.

(b) Corresponding to each eigenvalue of A, at, two of these solutions satisfy

(3.5):  pixiz) which satisfies \pixiz)\ < 1 for Izl > 1 and pi2iz) which satisfies

\pi2(z)\ > 1 for Izl > 1. As z —► 1 precisely one of these approaches 1; if i = 1,

. . . , m, píx (z) —> 1 as z —*■ 1 ; if i = m + 1, . . . , n, pi2(z) —► 1 as z —► 1.

Proof of (a).  Let

f(p, z)  = Det/ ¿   Ckpk - zl

(3.8)
= (Det C_x)p~" + • • • + (Det Cx)p"

= p^ [(Det C_,) + ■ • • + (Det Cx)p2n].

Fix lz01 > 1.  Then by (3.7) f(p, z0) has 2n zeros p(z0) =£ 0.  Each u(z) is analytic

in z except perhaps at branch points.

We may also write

fip, z) = n (zí(p)-z),
/=i

where the zA[p) are the eigenvalues of £fc=_i Ckpk (which is diagonalizable since it

has a spanning set of eigenvectors by (3.2)).

Since Iz,-(m)I < 1 for \p\ = 1 by (3.1), we may take lz0l sufficiently large so

that

Ind    Det(   23   Cfce,k9-zo/) = 0.
O<0<2jt \fc=-l /

Therefore, the number of zeros p(z0) of f(p, z0) inside the unit circle equals the num-

ber of poles of f(p, z0) at 0 which is n (from representation (3.8) of/(u, z0) and
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assumption (3.7)). Similarly, the number of zeros of fiji, z0) outside the unit circle

equals the number of poles at °°; this number is also n by (3.8) and (3.7).

Now, if we let z vary outside the unit circle, the functions p(z) cannot cross over

the unit circle since by (3.1) if lui = 1, then Iz I < 1.

Proof of (b). Suppose Det(S¿__, Ckpk -zl) = 0. Then there exists 0 such that

2¿__j Ckpk<f> = z0 and 0 = 0f, one of the eigenvectors of A

Then

i
z0f =   23    CkPk<t>i = SiipWi    or   z= gAji),

k=-l

gj(p) must be of the form al'Ju-1 + a^ + a^p; and thus, there can be no more than

two roots p(z) ofg¡(p)-z = 0. Since (3.5) has 2n roots,it follows that for each i there

are two roots p(z) satisfying (3.6).

By consistency we can write

(z- 1)0,- = ItAÍV- *) + G1" V2P(P- 1)U.      i = l,---,n,
Ax

or

Ar
z- 1= — fl,.(u-l) + (u-l)2p("-l)>

Ax

where p is an infinite series in powers ofp-l convergent near p = 1. Thus, for each i

exactly one of the two roots p¡(z) approaches 1 as z —► 1.

Also, this implies that we can choose z real and close to 1 so that \(p - l)2p(p - 1)1

< Iz - 11 for this value of p.

Then if we rewrite the above as

z-1        (p-l)2p(p-l)
p = 1 H-;-;-,

AtajAx Ata¡/Ax

we see for z > 1 and a¡ > 0, lui > 1, for z > 1 and at < 0, lui < 1.

For i = 1, . . . , n and Izl > 1 we shall denote by p¡x(z) the solution to (3.5),

which is inside the circle and by pi2(z) the solution to (3.5) which is outside the unit

circle.  Then, for i = 1, . . . , m, un(l) = 1 and pt2(l) =£ 1 and for i = m + I, ... ,

n,pi2(l)=landpix(l)i=l.  D

It follows from the proof of part (b) that for i = 1,...,«, we can write

/   MON,
z-I=di\l-1 (P- Pj2(l)), d, constant;

and therefore, we have

Corollary.  For v = 1,2, piviz) - pivil) = iz - l)fiviz), where 0 <kx <

\fiviz)\ < k2 for Izl > 1 and z sufficiently near 1.

We shall also require

Lemma 2.   The zeros pi2iz) of (3.5) are real if z is real and z > 1.

Proof.   If z and p satisfy (3.5), then whenever p is real, z is real by (3.2).

Let p be a zero of (3.5) which is outside the unit circle for Izl > 1.  Then p
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z - 1 = dj11-}(p~ 1),   where i = m + 1, . . . ,n;

satisfies

and hence u,i(l) = 1.  Since z is real whenever p is real, d¡ and pt{l) are real.

Now assume z is real and z > 1 ; then p - íju¿1(1) + 1) + ufl(l)/u is real; and

thus, Im p = -M,i(l)Im p~x, where -1 < pixil) < 1, which is impossible unless

Im p = Im p~x = 0.

The case lui < 1 now follows easily from this.  D

Now we have:   the general solution in H to the eigenvector problem (3.3) is

«(z), where

(3-9) u, = Ujiz) = £ <v4i(*M-
1=1

Putting this into the boundary condition (3.4), we obtain

(3.10) ¿ a/¿  ttfcl/

1=1       \k=0

Then, (3.9) will be an eigenvector of S with corresponding eigenvalue z, Izl > 1,

if and only if there exist ax, . . . , an not all zero such that (3.10) holds.

Now from Lemma 1, as z —► 1, pixiz) —► 1 for i = 1, . . . , m, so that

(3.11) U/(l) = ¿ a^OM-
í=i

will not in general belong to H.

Definition,   z = 1 is a generalized eigenvalue of S if (3.10) has a nontrivial

solution ox, . . . , on for z = 1.  The corresponding solution (3.11) is called a general-

ized eigenfunction.

In [6] Osher proves that for diagonal A, S has no generalized eigenvalue z with

Izl = 1 is sufficient for stability.  Kreiss in [3] under the additional assumption of

dissipativity shows that S has no generalized eigenvalue z with z = 1 implies stability.

4.   A Necessary Condition for Stability-Main Theorem.   Recall that E is the

subspace of C" spanned by the "negative" eigenvectors of A

s

K' = 23  ak    aix^L   W = null space of A''.
fc=0

Main Theorem.   A necessary condition for the stability of the difference

scheme il.4),il.5), il.€) is

N" DE = {0}.

If, in addition, 1 is a generalized eigenvalue of S, then Rank K' = m is also

necessary for stability.

Notice that if we extrapolate on a "negative" eigenvector 0,- of A, then
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fc=0 fc=0

Thus, the theorem imphes that we cannot extrapolate on "negative" eigenvectors of

A   If we extrapolate only on "positive" eigenvectors of A then since ui2(l) # 1 for

i = m + l,...,n, S will have no generalized eigenvalue z = 1.  Also, Rank K' = m

implies extrapolation on "positive" eigenvalues.

Proof of Theorem (1st assertion).   Assume that N n E ¥= {0}.  Then there exist

ox, . . . , on such that

t «*( Z °,a£(i)0,. ) = o
fc = 0 \i=l

and a,0 ¥= 0 for some /0, 1 < i0 < m.   Let w(z) EH be defined by

n

"/00 = 53  aÀiiz)^>i    for z > 1
1=1

(in all that follows it suffices to consider real z).

Since A is symmetric, we may choose {0,} to be orthonormal.  Then

-   1/2

««(*)»=r¿ i ¿ <wi(*m i2Axi]
|_/=o I i=l I       J

>\i.   la,0l2lM,0l(2)l2'Axl1

l%l(Ax) 1/2

(1- \p40iz)\rl2il + IWoiz)!)1'2

= ¿(zX* - l)"1 /2,    where l#(z) I > kx > 0

for z sufficiently near 1 by Lemma 2.   Then for z > 1,/ = 1, 2, . . . , [(5 - z)u(z)] •

= Oand

íiS-z)u]0=-z ¿  afc(23 a*^'
fc=0        \i=l

= z t Jt °i(PniV-Pniz))<Pi)
fc=o   y í=i y

= * ¿ ak( t °iiz - Ofofcty),
fc = 0        \i=l /

where \fikiz)\ < fc2 for z > 1, by the Corollary to Lemma 1.  Hence, 11(5 - z)m(z)II

= (z - l)/(z), where /(z) < k3 for z > 1 and z near 1.

Lemma 3. // 115"" II < k for all 0 < At < 5, 0 < mAt < T, then for all z with

lzl>l, 11(5-z)"1 II <*/(lzl-l).

Proof.   It is obvious that Il5m II < k implies that the spectrum of S is contained
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in the unit disc.  Then for Izl > 1,

Therefore,

is-z)-x =- 23 z-m-xsm.

m=0

11(5 - zfx l<    ¿    lz r""1 Il5m II <-—.  D
m = 0 Izl" 1

Now from above we have for z > 1 and z near 1 :

11(5 -z)-1 II >
..H(Z)II iz-lTXl2giz)

l(5-zMz)ll        (z-l)/(z)

giz) > kx > 0 and /(z) < k3. Thus, 11(5 - z)"1 II > (z - l)-3'2^, where k4 > 0 for

z > 1 and z near 1, violating Lemma 3 and implying the instability of the scheme.

We have now shown that E n N1 = {0} is necessary, and thus rank K' > m is

also necessary.

To prove the second assertion in the theorem, we assume 5 has a generalized

eigenvalue z = 1.  Then there exist ox, . . . , an not all zero such that

¿ «Jt ot&oy*!) =°-
¡t=0        \/=l

We have just shown that if the scheme is stable, then a¡ = 0 for i = 1, . . . ,

m.   Suppose now that a¡ = 0 for i = 1, . . . ,m but a¡ =£ 0 for at least one i = m +

l,...,n.

Two cases can occur.

First:  N1 = E1 and rank K' = m, which proves the second assertion in the theo-

rem.

Thus, we shall assume the second case:  there exist 0f, / = m + 1, . . . , n, such

that

t «kOi * o-
k=Q

To show instability in this case we explicitly compute the resolvent (5 - z)_1.

Again, we shall show that under this assumption the resolvent grows too rapidly as

z—* 1.

To simplify the calculations we make use of the following

Lemma 4.   Let H' be the subspace of H of sequences satisfying the boundary

conditions.   That is:

H' =\uEH
s

23 akuk = °
fc=0

//Izl > l,then (S-z)H' = H'.

Proof.   The inclusion (5 - z)H' Ç H' is obvious.

Let /EH'.  Then / = (5 - z)u, uEH,so that
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fj=    Z    Ckuj+k~zuj>       />!.
fc=-l

and

Therefore,

/o = (5")o - z"o = - Z   afc</k + z"fc) - z"o-
k=l

Z akuk = - Z °*4 = o. □
fc=0 k=0

Thus, in computing f = (S - z)~xv for z > 1, if we agree to take v E H', we may

assume fEH'. / = (5 - z)~xv is equivalent to (5 - z)f = v.   First, we look for the

general solution to

Z    Ckfj+k - zfj = vj'      /=1>2,
k=-l

This becomes

Let

//+1 = - C~il (C-ifj-i + (Co - z)fj - "/),      / > 1 •

y/+ !  = ifj, fj-Oln XI.        7i   = </o- °)2n X1.

then y/+1 = My¡ + g¡, where

M =
\-C7xiC0 z) -cx-xc_;

0 2n X2n 0
J2«X1

The eigenvalues of M are the solutions piv, i = 1, . . . ,n, v = 1, 2, to (3.5) with

corresponding eigenvectors

a-
where 2*=_, Ckpkiv(z)^ = z0,..

Lemma 5.   There exist n x n matrices Mx(z) and M2(z), analytic for Izl > 1

such that Mx = Mx(z) has eigenvalues pix(z) and eigenvectors 0,- and M2 = M2(z) has

eigenvalues pi2(z) and eigenvectors <p¡.

To see this let g be the « x n matrix whose columns are 0,, . . . , 0n.  Then

Mv = Mv(z) = Q
Plviz) 0

0 ' Pnviz)

Q~x    for i» =1,2

have the desired properties.

Also, notice that Mx -M2 is invertible for Izl > 1.   Let
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T = T(z)

(Mx -M2)'x      -M2(MX -M2yx

-(MX-M2TX     MX(MX-M2TX
2n X2n

Then

T~x = T(z)~x Mx    M2

I      I
and    TMT~X =

2nX2n

Mx        0

0    M,
2nX2n

(for proof see Appendix 1).  Let w- = Ty¡.  Then w- is a solution of w+1

TMT~xwj + Tgf or

(4.1)

Let

wi+i =
Mx      0

0    M,
wi + T*r

w) = (w)x\ ..., uf >)',      wjl = (wjn + x\ ..., wf ">)'.

Then the general solution to (4.1) is

(4-2)    vv)+1 = 23 MTiTgJ + M[w\,      wxx+x=-   ±    Mf(Tgv)u.
v=j+ 1

To solve for w\ we use the boundary conditions.  We are solving /= (S - z) xv,

where both/and v are in //'.  Then z^k=0 akfk = 0 becomes

z
fc = 0 0     0

yk + x =0,

which becomes

s    fat    0~l s
Z    1  Jr~V„=o,    23
k=o [_ 0     Oj fc=o 0 0

w fc+l

K+i.
Putting the general solution (4.2) into this, we obtain:

i /   k

z
fe=(
z m*i z ^r(Tgv)x+^xw\\
1=0 \v=l )

+ z ^2 - z Mk-»(Tgvr)=o,
k=0 \    v=k+l

which becomes

(4.3)

53  akMk + xw\=- 23  W X M'riTgJ
fc=0 k=0 \v=l

+ z «4 z ^+i-w)-
fc=0        \v=k+l



718 ANNE M. BURNS

Let Ciz) = zZsk=0 a^Sx.  We shall need

Lemma 6.  Det Ciz) = (z - l)/(z), where l/(z)l <ks for z > 1 and z near 1 ;

and hence, 0(z)_1 = Fiz)/iz - 1), where

0<k6< \Fiz)\ =   sup    lF(z)vl.
IV l = 1

To see this:   5 has a generalized eigenvalue at z = 1 implies that Det 0(1) = 0.

But Det Ciz) is a sum of products of polynomials in pixiz), i = 1, ...,«, all of

degree > 1, and for each i we may write pixiz) = ju,-i(l) + (z - l)/j(z), where/(l)

# 0 from Corollary to Lemma 1.  (For more detailed proof see Appendix 2.)

Now for z real, z > 1 we choose x(z) E H' so that

Xjiz) = 0    forj = 0,...,s,

Xjiz) = -C,(Jl/, - M2K2+ »-'(z)*,,     / = s + 1, . . . ,

where S 0^0,- + 0.  By Lemma 2, Afote) *s real and uf2(z) -> 1-  This §ives

hxiz)
llxll = lje(z)l =-—-,   where /^(z) > k6 > 0.

Now let Vjiz) = xfiz)/ llx II.  Then Tgß) = 0 for / = 1, . . . , s + 1 and for / = s +

2, . . . ,

(tg,)1 ■

(Tg,r\

iTgjiz))1 iMx - M2)-xC7xvhxiz)

iTgjiz))n\     [-(M, -M^C-^v^iz)]

Since Tgj = 0 for j = 1, ... ,s + 1, the first sum on the right-hand side of (4.3) is

zero; and (4.3) becomes

dz)w\ = 23 ock   23  Mk2+x-iiTgj)n
k=0       \j=s+2

té •*(£ .******)
llxll

vrllt^(i «tpfr-Hz»,
KZ)     \fc:

where for z > 1 and sufficiently near 1

hxiz)>k6>0    and    0</j(z)<Jts.

We chose 0f so that 2£=0 afc0¿ # 0 and since pi2iz) —► 1 as z —► 1

23  afcMf2"í_1(z)0í  >kn>0    for z near 1.
fe = 0
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Then

w\iz) = (z - l)-3/2F(z) k-^- ( ¿  a^-^iz)^,
Hz)   U=o /

and hence

\\wiz)\\ > \wliz)\ > (z- ir3/2fc9,      k9 > 0,

for z > 1 and z near 1, so that, as T~x is bounded below for all z > 1,

«(S-zr'vll = 11/11 = Hllyll = Vi\\Txw\\ >fc10llwll,

again violating the necessary condition for stability in Lemma 3.  D

5.  Some Remarks and Examples.  In the scalar case ut = aux the general solu-

tion to the eigenvalue problem for Izl > 1 is «• = p1, where

(5.1) 23 ckpk = z,    \p\<i.
fc=-l

Putting this into the boundary conditions, we obtain

(5.2) 23  ctkpk = 0,      akEC,a0 = l.
k = 0

If the boundary conditions are 0((Ax/), then we may write (5.2) as

¿   akpk = ip-lf.
k=0

If a < 0, then p —> 1 ; and as in the proof of the first assertion in the Main Theorem,

let u{z) = p'iz),j = 0, 1, 2, ... , where (z) satisfies (5.1) and lu(z)l < 1.

Then repeating that argument, 11(5 - z)u\\ = (z - l)sgiz) where g(z) < k and so

11(5-z)-1 ii >^(z-irs-i/2.

Thus, the higher the order of extrapolation on a negative eigenvector, the worse

the behavior of 11(5 - z)~x II as z —► 1.

Example.   Consider the Lax-Wendroff approximation to

(5.3)

ax     0

0    a,
ux,       flj < 0, a2 > 0,

«(0,r) = 0,      0<I/3I<1.
1    -ß

0     0

The proper boundary conditions for the difference scheme are

(5.4) u0 + axux + a2u2 = 0,

where
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Ci,   =

0

0

■20

-2
a2

0   ß

0    1

This scheme has no generalized eigenvalue at z = 1 and is stable.  If on the other

hand, we use the boundary conditions (5.4) with

-2    -2/3

0      -2

1    ß

0    1

then the scheme is unstable since a "negative" eigenvector of A, (1, 0)f is in N1.

If z = 1 is a generalized eigenvalue of 5, a necessary condition for stability is

K'ty — 0 for all 0f which are "positive" eigenvectors of A.  Unfortunately, this is not

sufficient, for consider again the scalar case ut = aux, a > 0, with boundary condi-

tions:

Z  ockukit + At) = 0,      a0 = 1,
*=o

which satisfy

¿   <xkpk =(p-l)(p- p(l)f-x,   where s > 3.
k=0

This is seen to be unstable by letting uXz) = p'iz) where p is the zero of (5.1) which

is inside the unit circle for Izl > 1. In this case Hm(z)II may remain bounded as z —►

1 (as in the Lax-Wendroff scheme) but for real z, z > 1,

11(5 - z)uiz) II = kiz)iz -I)2,   where fc(z) < k.

Again this leads to

11(5-z)-1 II >kiz- 1)- n-2

So far we have examined the behavior of the resolvent (5 - z)~x only when 5

has a generalized eigenvalue at z = 1.   For a dissipative scheme the only possible

generalized eigenvalue z with Izl = 1 for 5 under our assumptions is z = 1.  However,

in a nondissipative scheme it is possible for 5 to have a generalized eigenvalue z =£ 1

but Izl = 1.

For example, consider the leap-frog approximation to the scalar partial differen-

tial equation ut = aux :

At
u,it + At) = Ujit - At) + ariuj+xit) - uf_xit)), r =

Ax

53 akukit + At) = o,    23 oikpk=ii-pf.
k = 0 k=0

While this is not of the form (1.4) and UjiAt) must be specified as well as uiO), our

methods still apply.

The operator 5 which corresponds to this scheme has a generalized eigenvalue

at z = -1.  To see this we look at the roots p of z - z~x = ar(p - p~x).  The root
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p which is inside the unit circle for Izl > 1 is given by

z2-l-V(z2-l)2+aW
Mi

arz

Now for positive a, we see that as z —► -1 we have u, —► 1 ; and therefore,

z = -1 is a generalized eigenvalue of 5.

If we let ua[z) = p{iz), then proceeding as before, we see that as z —► - 1,

11(5 - z)_1 II grows too rapidly for stability.

Thus, for this nondissipative scheme approximating ut = aux, extrapolating at

the boundary even with a > 0 gives an unstable scheme.

6.  The General Case.   Let us now consider the general explicit difference ap-

proximation to (1.1), (1.2), (1.3):

(6-1) M/(r + Ar)= Z  ckui+kit),
k=—r

(6.2) u,iO) = fj,

(6.3) ujit + At)+ ¿ afkuit + At) = 0,      j = -r + 1, . . . , 0.
fc=i

The scalar product in H now becomes

(w, v) = (    ¿     wj ' vjj A*

and the operator 5 is now defined by

(6.4) (Su)f=  23   Ckuj+k, y = 1,2,...,
*=-/•

(6.5) (Su)j = - 23  ajkis»)k -     / - -r + 1, . . . , 0.
fc=i

The general solution to the eigenvalue problem for |z| > 1 is u, = w(z) =

2|«.|<iO',-A'/-f>,(/)> where u- are the roots of

(6.6) Deri   23   Ckpk -zl\ = 0

and P¡ij) are polynomials in/' with vector coefficients; the order of P¡ij) is one less

than the multiplicity of the corresponding p¡ (see Kreiss [3]).

If the p¡ are distinct, this becomes

(6.7) "/=    Z     °iPfat>
lu,.Kl
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where

(6.8) 23   Ck^ = z^.
k=-r

In this case for Izl > 1 there are rn values of p with lui < 1 and pn values of

p with lui > 1.  The proof is the same as that of Lemma 1(a).  As in (b) of Lemma

1, for each eigenvector 0¿ in (6.6), there is exactly one value of u which approaches

1 as z —* 1; for i = 1, . . . , m that value of u approaches 1 from inside the unit

circle; if i = m + 1, . . . ,n, that value of p approaches 1 from outside the unit circle.

Therefore, in the case where Izl > 1 the roots are distinct and we can write the

general solution to the eigenvalue problem

rn

(6.9) Uj = 53 o,fa.
i=i

In order for 5 to have a generalized eigenvalue at z = 1 there must exist ax,

. . . , orn not all zero such that

1=1

40) + Z   «/*",■(!)
fc=l

0,- = 0, ■T + l, 0.

In general we know very little about the roots of (6.6) except what we have

stated above.  We can prove a necessary condition for stability:

For all w E E (the negative eigenspace of A) we must have:

7+53   a/fc) w ^ 0    f°r some / = r + 1,. . . , 0.
¡t=i

If for some w€f,(/+ 2*=i a/fc)w = 0 for all / = r + 1, . . . , 0, then we

can show that the scheme is unstable exactly as we did in the case r = p = 1.

If we solve explicitly for the resolvent (5 - z)_1 for Izl > 1 in an attempt to

prove instability when z = 1 is an eigenvalue of 5 but we have eliminated from the

boundary space the negative eigenvectors of A, we run into problems.

Because of the fact that it is now possible for some of the roots pJ(z) of (6.6)

which he inside the unit circle to coalesce at z = 1, the boundary matrix (a general-

ization of (4.3)) may no longer have a factor of z - 1, but only of (z - l)1 lq where

q is the multiplicity of some root u,-(l) of (6.6) (see Kreiss [3] ).

Appendix 1.   Proof That Tiz)MT-xiz) = [M^   ° ].  We shall prove that

MT~X = T
-i M,

0     M,

Mx    M2

I       I

Mx      0

0     M-,

'M\    M:

Mx    M2

Recall Q is the matrix whose columns are the eigenvectors of A.  Then
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MT~X =
-cxxic0-z)   -cxxc_x

I 0

Mx    M2

I      I

r_„-ii-cx (c0 - z)Mx - c~xc_x    ~cxxic0 - z)M2 - cxxc_x

Mt At,'1 J"2

We need only show ~c7xic0 - z)Mx - c[xc_x = Mx and -c7xic0 - zyM2 - c7xc_1

= M2.  Since {<p¡ I i = 1, . . . , n } is a basis for C", it is sufficient to show that the

two matrices operating on any basis vector give the same vector.

Then for / = 1, . . . , n,

-c7xic0 - zyMx^- c7xc_x<¡>i

= -c\xic0 - z)pix<¡>¡ - C^C^i

= -Piic'il(ico - z) + c-ilHiWi

= JuI210,=M20,..

The same argument works for M2.

Appendix 2.   Proof of Lemma 6.

Ciz)=¿   ockMk+x = ¿   akQ
fc=0 k=0

„k+1
Pi I

¿Vil

Q,-i

= Z oík[pkxtx^x---pkt1<P„]Q-1..
fc = 0

det Ciz) = Det

>llO*ll)- '• PiniPnJ

PnliPll)- • -PnniPnl)

DetQ'1,

where pki(Pn) are polynomials of degree > 1 in pixiz) and Det Q~x + 0.

Now 5 has a generalized eigenvalue at z = 1 implies that det 0(1) = 0, which

implies that the determinant of the first matrix above is zero at z = 1.

If we write

PiXiz) = puil) + (z - l)/.(z),      ft!) * 0,

by the Corollary to Lemma 1, then

[Pnißii)- • • PiniPnl)

Det

P„l("ll) ' - ' PnniPnl)

= Det

PllG*llO))'- ' '  PiniPnli1))

PnliPnli1))- ' • £„„(¿,„(1))

+ (z - l)Az),

where 1/(1)1 < fc.
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