Convergence of vortex methods for Euler’s equations
HTML articles powered by AMS MathViewer
- by Ole Hald and Vincenza Mauceri del Prete PDF
- Math. Comp. 32 (1978), 791-809 Request permission
Abstract:
A numerical method for approximating the flow of a two dimensional incompressible, inviscid fluid is examined. It is proved that for a short time interval Chorin’s vortex method converges superlinearly toward the solution of Euler’s equations, which govern the flow. The length of the time interval depends upon the smoothness of the flow and of the particular cutoff. The theory is supported by numerical experiments. These suggest that the vortex method may even be a second order method.References
-
A. K. BATCHELOR, Introduction to Fluid Dynamics, Cambridge Univ. Press, London, 1967.
- Alexandre Joel Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57 (1973), no. 4, 785–796. MR 395483, DOI 10.1017/S0022112073002016 A. J. CHORIN & P. S. BERNARD, "Discretization of a vortex sheet, with an example of roll-up," J. Computational Phys., v. 13, 1973, pp. 423-429.
- Theodore E. Dushane, Convergence for a vortex method for solving Euler’s equation, Math. Comp. 27 (1973), 719–728. MR 339675, DOI 10.1090/S0025-5718-1973-0339675-6
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Tosio Kato, On classical solutions of the two-dimensional nonstationary Euler equation, Arch. Rational Mech. Anal. 25 (1967), 188–200. MR 211057, DOI 10.1007/BF00251588
- F. J. McGrath, Nonstationary plane flow of viscous and ideal fluids, Arch. Rational Mech. Anal. 27 (1967), 329–348. MR 221818, DOI 10.1007/BF00251436
- F. Milinazzo and P. G. Saffman, The calculation of large Reynolds number two-dimensional flow using discrete vortices with random walk, J. Comput. Phys. 23 (1977), no. 4, 380–392. MR 452145, DOI 10.1016/0021-9991(77)90069-9 D. W. MOORE, The Discrete Vortex Approximation of a Finite Vortex Sheet, California Inst. of Tech. Report AFOSR-1804-69, 1971. L. ROSENHEAD, "The formation of vortices from a surface of discontinuity," Proc. Roy. Soc. London Ser. A, v. 134, 1932, pp. 170-192. A. I. SHESTAKOV, Numerical Solution of the Navier-Stokes Equations at High Reynolds Numbers, Ph. D. Thesis, Univ. of California, Berkeley, Calif.,1975. H. TAKAMI, Numerical Experiment with Discrete Vortex Approximation, with Reference to the Rolling Up of a Vortex Sheet, Dept. of Aero. and Astr., Stanford University Report SUDAER-202, 1964. F. L. WESTWATER, Aero.Res. Coun., Rep. and Mem. #1692, 1936. See also Batchelor [1, p. 590].
- W. Wolibner, Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z. 37 (1933), no. 1, 698–726 (French). MR 1545430, DOI 10.1007/BF01474610
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Math. Comp. 32 (1978), 791-809
- MSC: Primary 76C05; Secondary 65N99
- DOI: https://doi.org/10.1090/S0025-5718-1978-0492039-1
- MathSciNet review: 492039