Finite Differences of the Partition Function

By Hansraj Gupta

Abstract. From the Hardy-Ramanujan-Rademacher formula for \(p(n) \) — the number of unrestricted partitions of \(n \), it is not difficult to deduce that there exists a least positive integer \(n_0(r) \) such that \(V^r p(n) > 0 \) for each \(n \geq n_0(r) \), where \(Vp(n) = p(n) - p(n - 1) \) and \(V^r p(n) = V\{ V^{r-1} p(n) \} \). In this note, we give values of \(n_0(r) \) for each \(r < 10 \) and conjecture that \(n_0(r)/r^3 \sim 1 \).

1. Notation. In the following, small letters denote positive integers unless stated otherwise; \(p(n) \) denotes the number of unrestricted partitions of \(n \); \(p(n, m) \) is the number of partitions of \(n \) into exactly \(m \) summands, when \(m \leq n \); and we take as usual

\[
p(0) = 1, \quad p(-n) = 0;
\]

\[
p(n, m) = 0 \quad \text{for } n < m; \quad p(0, m) = 0 = p(-n, m).
\]

For any arithmetic function \(f(n) \), the operator \(V \) is defined by

\[
Vf(n) = f(n) - f(n - 1) \quad \text{and} \quad V^r f(n) = V\{ V^{r-1} f(n) \}.
\]

2. Differences of \(p(n) \). We have [1]

\[
p(n) - p(n - 1) = \sum_{m \geq 1} p(n - m, m) \quad \text{for each } n \geq 1;
\]

so that \(Vp(n) > 0 \) for \(n \geq 1 \). For \(n = 0 \), \(Vp(n) = 1 \). Again,

\[
V^2 p(n) = p(n) - 2p(n - 1) + p(n - 2)
\]

\[
= \sum_{m \geq 1} \{ p(n - m, m) - p(n - 1 - m, m) \}, \quad n \geq 2.
\]

Hence, we have the known result

\[V^2 p(n) > 0 \quad \text{for } n \geq 2. \]

For \(n = 1 \), however, \(V^2 p(n) = -1 \). For \(n = 0 \), \(V^2 p(n) = 1 \).

Using the well-known Hardy-Ramanujan-Rademacher series for \(p(n) \), it is not difficult to show that

\[
V' p(n) = C_r p(n)(1 + O(n^{-1/2}))
\]
where \(C_r = (\pi/\sqrt{6})^{r}/4\sqrt{3} \). Hence, there exists a least positive integer \(n_0(r) \) such that

\[V^r p(n) \geq 0 \quad \text{for each} \quad n \geq n_0(r). \]

More explicitly, on the basis of our calculations, we can say that

- for each odd \(n < n_0(r) \), \(V^r p(n) \) is negative;
- for each odd \(n \geq n_0(r) \), \(V^r p(n) \) is \(\geq 0 \); while
- for each even \(n \geq 0 \), \(V^r p(n) \) \(\geq 0 \).

<table>
<thead>
<tr>
<th>(r)</th>
<th>(n_0)</th>
<th>(n)</th>
<th>(V^r p(n))</th>
<th>(r)</th>
<th>(n_0)</th>
<th>(n)</th>
<th>(V^r p(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>26</td>
<td>21</td>
<td>-4</td>
<td>7</td>
<td>352</td>
<td>349</td>
<td>-780 36820</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>65</td>
<td>-87</td>
<td>8</td>
<td>510</td>
<td>509</td>
<td>-57339 70174</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td>-64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>1497</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71</td>
<td>152</td>
</tr>
<tr>
<td>5</td>
<td>134</td>
<td>129</td>
<td>-8840</td>
<td>9</td>
<td>704</td>
<td>703</td>
<td>-45 72279 29371</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>133</td>
<td>-3143</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>134</td>
<td>1 12115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>135</td>
<td>951</td>
</tr>
<tr>
<td>6</td>
<td>228</td>
<td>223</td>
<td>-7 89593</td>
<td>10</td>
<td>934</td>
<td>933</td>
<td>-14518 50404 20380</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>225</td>
<td>-5 59660</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>227</td>
<td>-2 47781</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>228</td>
<td>123 79258</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>229</td>
<td>1 25723</td>
</tr>
</tbody>
</table>
3. The Table. In the table above, we give the values of \(n_0(r) \) for \(3 \leq r \leq 10 \). We give also values of \(V'(n) \) for some values of \(n \) in the neighborhood of \(n_0(r) \) to bring out clearly how the change takes place. The Royal Society Tables of Partitions [2] were freely used in preparing this table.

It is noteworthy that within the limits of our table

\[
n_0(r)/r^3 \text{ is about } 1.
\]

We conjecture that

\[
n_0(r)/r^3 \sim 1.
\]

We might here mention that the problem discussed in this note was raised by George E. Andrews.

Panjab University
Chandigarh 160014, India

402 Mumfordganj
Allahabad 211002, India
