Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Pisot and Salem numbers in intervals of the real line
HTML articles powered by AMS MathViewer

by David W. Boyd PDF
Math. Comp. 32 (1978), 1244-1260 Request permission

Abstract:

Based on the work of Dufresnoy and Pisot, we develop an algorithm for determining all the Pisot numbers in an interval of the real line, provided this number is finite. We apply the algorithm to the problem of determining small Salem numbers by Salem’s construction, and to the proof that certain Pisot sequences satisfy no linear recurrence relation.
References
  • Mohamed Amara, Ensembles fermés de nombres algébriques, Ann. Sci. École Norm. Sup. (3) 83 (1966), 215–270 (1967) (French). MR 0237459
  • P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355–369. MR 296021, DOI 10.4064/aa-18-1-355-369
  • David W. Boyd, Pisot sequences which satisfy no linear recurrence, Acta Arith. 32 (1977), no. 1, 89–98. MR 427241, DOI 10.4064/aa-32-1-89-98
  • David W. Boyd, Small Salem numbers, Duke Math. J. 44 (1977), no. 2, 315–328. MR 453692
  • D. W. BOYD, "Pisot numbers and the width of meromorphic functions." (Privately circulated manuscript.)
  • David G. Cantor, On families of Pisot $E$-sequences, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 2, 283–308. MR 417115
  • J. Dufresnoy and Ch. Pisot, Etude de certaines fonctions méromorphes bornées sur le cercle unité. Application à un ensemble fermé d’entiers algébriques, Ann. Sci. Ecole Norm. Sup. (3) 72 (1955), 69–92 (French). MR 0072902
  • J. Dufresnoy and C. Pisot, Sur les éléments d’accumulation d’un ensemble fermé d’entiers algébriques, Bull. Sci. Math. (2) 79 (1955), 54–64 (French). MR 73634
  • P. H. GALYEAN, On linear recurrence relations for E-sequences, Thesis, University of California, Los Angeles, 1971.
  • Marthe Grandet-Hugot, Ensembles fermés d’entiers algébriques, Ann. Sci. École Norm. Sup. (3) 82 (1965), 1–35 (French). MR 0193063
  • Donald E. Knuth, The art of computer programming, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms. MR 0378456
  • R. Salem, A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan, Duke Math. J. 11 (1944), 103–108. MR 10149
  • R. Salem, Power series with integral coefficients, Duke Math. J. 12 (1945), 153–172. MR 11720
  • Carl Ludwig Siegel, Algebraic integers whose conjugates lie in the unit circle, Duke Math. J. 11 (1944), 597–602. MR 10579
  • C. J. SMYTH, personal communication, March 10, 1977.
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 12A15
  • Retrieve articles in all journals with MSC: 12A15
Additional Information
  • © Copyright 1978 American Mathematical Society
  • Journal: Math. Comp. 32 (1978), 1244-1260
  • MSC: Primary 12A15
  • DOI: https://doi.org/10.1090/S0025-5718-1978-0491587-8
  • MathSciNet review: 0491587