## Calculating the best approximate solution of an operator equation

HTML articles powered by AMS MathViewer

- by H. Wolkowicz and S. Zlobec PDF
- Math. Comp.
**32**(1978), 1183-1213 Request permission

## Abstract:

This paper furnishes two classes of methods for calculating the best approximate solution of an operator equation in Banach spaces, where the operator is bounded, linear and has closed range. The best approximate solution can be calculated by an iterative method in Banach spaces stated in terms of an operator parameter. Specifying the parameter yields some new and some old iterative techniques. Another approach is to extend the classical approximation theory of Kantorovich for equations with invertible operators to the singular case. The best approximate solution is now obtained as the limit of the best approximate solutions of simpler equations, usually systems of linear algebraic equations. In particular, a Galerkin-type method is formulated and its convergence to the best approximate solution is established. The methods of this paper can also be used for calculating the best least squares solution in Hilbert spaces or the true solution in the case of an invertible operator.## References

- Philip M. Anselone,
*Collectively compact operator approximation theory and applications to integral equations*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. With an appendix by Joel Davis. MR**0443383** - P. M. Anselone and R. H. Moore,
*Approximate solutions of integral and operator equations*, J. Math. Anal. Appl.**9**(1964), 268โ277. MR**184448**, DOI 10.1016/0022-247X(64)90042-3 - Kendall E. Atkinson,
*The solution of non-unique linear integral equations*, Numer. Math.**10**(1967), 117โ124. MR**220013**, DOI 10.1007/BF02174143 - Kendall E. Atkinson,
*A survey of numerical methods for the solution of Fredholm integral equations of the second kind*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. MR**0483585** - Adi Ben-Israel,
*On direct sum decompositions of Hestenes algebras*, Israel J. Math.**2**(1964), 50โ54. MR**171172**, DOI 10.1007/BF02759734 - Adi Ben-Israel,
*On error bounds for generalized inverses*, SIAM J. Numer. Anal.**3**(1966), 585โ592. MR**215504**, DOI 10.1137/0703050
A. BEN-ISRAEL, "A note on an iterative method for generalized inversion of matrices," - Adi Ben-Israel and Dan Cohen,
*On iterative computation of generalized inverses and associated projections*, SIAM J. Numer. Anal.**3**(1966), 410โ419. MR**203917**, DOI 10.1137/0703035 - Adi Ben-Israel and Thomas N. E. Greville,
*Generalized inverses: theory and applications*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR**0396607** - Abraham Berman and Robert J. Plemmons,
*Cones and iterative methods for best least squares solutions of linear systems*, SIAM J. Numer. Anal.**11**(1974), 145โ154. MR**348984**, DOI 10.1137/0711015 - J. Blatter, P. D. Morris, and D. E. Wulbert,
*Continuity of the set-valued metric projection*, Math. Ann.**178**(1968), 12โ24. MR**228984**, DOI 10.1007/BF01350621
C. W. GROETSCH, - W. J. Kammerer and M. Z. Nashed,
*On the convergence of the conjugate gradient method for singular linear operator equations*, SIAM J. Numer. Anal.**9**(1972), 165โ181. MR**319368**, DOI 10.1137/0709016 - W. J. Kammerer and R. J. Plemmons,
*Direct iterative methods for least-squares solutions to singular operator equations*, J. Math. Anal. Appl.**49**(1975), 512โ526. MR**368418**, DOI 10.1016/0022-247X(75)90194-8
L. V. KANTOROVICH, "Functional analysis and applied mathematics," - L. V. Kantorovich and G. P. Akilov,
*Functional analysis in normed spaces*, International Series of Monographs in Pure and Applied Mathematics, Vol. 46, The Macmillan Company, New York, 1964. Translated from the Russian by D. E. Brown; Edited by A. P. Robertson. MR**0213845**
M. A. KRASNOSELโSKIร ET AL., - W. F. Langford,
*The generalized inverse of an unbounded linear operator with unbounded constraints*, SIAM J. Math. Anal.**9**(1978), no.ย 6, 1083โ1095. MR**512512**, DOI 10.1137/0509087 - V. Lovass-Nagy and D. L. Powers,
*On under- and over-determined initial value problems*, Internat. J. Control**19**(1974), 653โ656. MR**0350094**, DOI 10.1080/00207177408932660 - L. A. Liusternik and V. J. Sobolev,
*Elements of functional analysis*, Russian Monographs and Texts on Advanced Mathematics and Physics, Vol. 5, Hindustan Publishing Corp., Delhi; Gordon and Breach Science Publishers, Inc., New York, 1961. MR**0141967** - R. H. Moore and M. Z. Nashed,
*Approximations to generalized inverses of linear operators*, SIAM J. Appl. Math.**27**(1974), 1โ16. MR**361858**, DOI 10.1137/0127001 - F. J. Murray,
*On complementary manifolds and projections in spaces $L_p$ and $l_p$*, Trans. Amer. Math. Soc.**41**(1937), no.ย 1, 138โ152. MR**1501894**, DOI 10.1090/S0002-9947-1937-1501894-5 - N. I. Muskhelishvili,
*Singular integral equations*, Wolters-Noordhoff Publishing, Groningen, 1972. Boundary problems of functions theory and their applications to mathematical physics; Revised translation from the Russian, edited by J. R. M. Radok; Reprinted. MR**0355494** - M. Z. Nashed,
*Generalized inverses, normal solvability, and iteration for singular operator equations*, Nonlinear Functional Anal. and Appl. (Proc. Advanced Sem., Math. Res. Center, Univ. of Wisconsin, Madison, Wis., 1970) Academic Press, New York, 1971, pp.ย 311โ359. MR**0275246** - M. Zuhair Nashed,
*Perturbations and approximations for generalized inverses and linear operator equations*, Generalized inverses and applications (Proc. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1973) Publ. Math. Res. Center Univ. Wisconsin, No. 32, Academic Press, New York, 1976, pp.ย 325โ396. MR**0500249** - T. G. Newman and P. L. Odell,
*On the concept of a $p-q$ generalized inverse of a matrix*, SIAM J. Appl. Math.**17**(1969), 520โ525. MR**255559**, DOI 10.1137/0117050 - W. V. Petryshyn,
*On generalized inverses and on the uniform convergence of $(I-\beta K)^{n}$ with application to iterative methods*, J. Math. Anal. Appl.**18**(1967), 417โ439. MR**208381**, DOI 10.1016/0022-247X(67)90036-4 - W. V. Petryshyn,
*On the generalized overrelaxation method for operation equations*, Proc. Amer. Math. Soc.**14**(1963), 917โ924. MR**169402**, DOI 10.1090/S0002-9939-1963-0169402-2 - W. V. Petryshyn,
*On the extrapolated Jacobi or simultaneous displacements method in the solution of matrix and operator equations*, Math. Comp.**19**(1965), 37โ55. MR**176601**, DOI 10.1090/S0025-5718-1965-0176601-2
J. L. PHILLIPS, - P. M. Prenter,
*A collection method for the numerical solution of integral equations*, SIAM J. Numer. Anal.**10**(1973), 570โ581. MR**327064**, DOI 10.1137/0710051 - C. Radhakrishna Rao and Sujit Kumar Mitra,
*Generalized inverse of matrices and its applications*, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR**0338013** - Ivan Singer,
*Bases in Banach spaces. I*, Die Grundlehren der mathematischen Wissenschaften, Band 154, Springer-Verlag, New York-Berlin, 1970. MR**0298399** - Ivar Stakgold,
*Boundary value problems of mathematical physics. Vol. I*, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1967. MR**0205776** - G. W. Stewart,
*On the continuity of the generalized inverse*, SIAM J. Appl. Math.**17**(1969), 33โ45. MR**245583**, DOI 10.1137/0117004 - Angus E. Taylor,
*Introduction to functional analysis*, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR**0098966** - K. S. Thomas,
*On the approximate solution of operator equations*, Numer. Math.**23**(1974/75), 231โ239. MR**373275**, DOI 10.1007/BF01400306
R. S. VARGA, - Richard S. Varga,
*Matrix iterative analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0158502** - S. Zlobec,
*On computing the best least squares solutions in Hilbert space*, Rend. Circ. Mat. Palermo (2)**25**(1976), no.ย 3, 256โ270 (1977) (English, with Italian summary). MR**519596**, DOI 10.1007/BF02849512

*Math. Comp.*, v. 20, 1966, pp. 439-440.

*Computational Theory of Generalized Inverses of Bounded Linear Operators*:

*Representation and Approximation*, Dekker, New York, 1977. Y. IKEBE,

*The Galerkin Method for the Numerical Solution of Fredholm Integral Equations of the Second Kind*, Rept. CNA-S, Univ. of Texas, Austin, Texas, 1970.

*Uspehi Mat. Nauk*, v. 3, 1948, pp. 89-195. (Russian)

*Approximate Solution of Operator Equations*, Noordhoff, Groningen, 1972.

*Collocation as a Projection Method for Solving Integral and Other Operator Equations*, Thesis, Purdue University, 1969.

*Extensions of the Successive Overrelaxation Theory with Applications to Finite Element Approximations*, Department of Mathematics, Kent State University, Kent, Ohio.

## Additional Information

- © Copyright 1978 American Mathematical Society
- Journal: Math. Comp.
**32**(1978), 1183-1213 - MSC: Primary 65J05; Secondary 47A50
- DOI: https://doi.org/10.1090/S0025-5718-1978-0494922-X
- MathSciNet review: 0494922