Numerical treatment of eigenvalue problems for differential equations with discontinuous coefficients
HTML articles powered by AMS MathViewer
- by I. Babuška and J. E. Osborn PDF
- Math. Comp. 32 (1978), 991-1023 Request permission
Abstract:
The eigenvalues of a second order differential equation are approximated by "factoring" the second order equations into a first order system and then applying the Ritz-Galerkin method to this system. Convergence results and error estimates are derived. These error estimates are based on the application of Sobolev spaces with variable order.References
- Ivo Babuška, Homogenization and its application. Mathematical and computational problems, Numerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975) Academic Press, New York, 1976, pp. 89–116. MR 0502025 I. BABUŠKA & A. K. AZIZ, "Survey lectures on the mathematical foundations of the finite element method," The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), Academic Press, New York, 1973, pp. 5-359.
- I. Babuška, J. T. Oden, and J. K. Lee, Mixed-hybrid finite element approximations of second-order elliptic boundary-value problems, Comput. Methods Appl. Mech. Engrg. 11 (1977), no. 2, 175–206. MR 451771, DOI 10.1016/0045-7825(77)90058-5
- Carl de Boor, A bound on the $L_{\infty }$-norm of $L_{2}$-approximation by splines in terms of a global mesh ratio, Math. Comp. 30 (1976), no. 136, 765–771. MR 425432, DOI 10.1090/S0025-5718-1976-0425432-1
- J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), 525–549. MR 366029, DOI 10.1090/S0025-5718-1973-0366029-9 C. CONUTO, "Eigenvalue approximation by mixed methods," Rev. Française Automat. Informat. Recherche Opérationelle Sér. Rouge Anal. Numér. (To appear.)
- Françoise Chatelin, La méthode de Galerkin. Ordre de convergence des éléments propres, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1213–1215 (French). MR 343592
- Jim Douglas Jr., Todd Dupont, and Lars Wahlbin, Optimal $L_{\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems, Math. Comp. 29 (1975), 475–483. MR 371077, DOI 10.1090/S0025-5718-1975-0371077-0
- George J. Fix, Eigenvalue approximation by the finite element method, Advances in Math. 10 (1973), 300–316. MR 341900, DOI 10.1016/0001-8708(73)90113-8 L. HERRMANN, "Finite element bending analysis for plates," J. Engrg. Mech. Div. ASCE, v. 93, 1967, pp. 13-26.
- William G. Kolata, Approximation in variationally posed eigenvalue problems, Numer. Math. 29 (1977/78), no. 2, 159–171. MR 482047, DOI 10.1007/BF01390335 S. NEMAT-NASSER, "General variational methods for elastic waves in composites," J. Elasticity, v. 2, 1972, pp. 73-90. S. NEMAT-NASSER, "Harmonic waves in layered composites," J. Appl. Mech., v. 39, 1972, pp. 850-852. S. NEMAT-NASSER, "General variational principles in nonlinear and linear elasticity with applications," Mechanics Today, vol. 1, Pergamon Press, New York, 1974, pp. 214-261. S. NEMAT-NASSER & F. FU, "Harmonic waves in layered composites: bounds on frequencies," J. Appl. Mech., v. 41, 1974, pp. 288-290.
- S. Nemat-Nasser, Stability of a system of interacting cracks, Internat. J. Engrg. Sci. 16 (1978), no. 4, 277–285. MR 0495382, DOI 10.1016/0020-7225(78)90094-0 J. A. NITSCHE, private communication.
- J. Nitsche and A. Schatz, On local approximation properties of $L_{2}$-projection on spline-subspaces, Applicable Anal. 2 (1972), 161–168. MR 397268, DOI 10.1080/00036817208839035
- Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937–958. MR 373325, DOI 10.1090/S0025-5718-1974-0373325-9
- Finite element bibliography, IFI/Plenum, New York-London, 1976. Compiled by Douglas Norrie and Gerard de Vries. MR 0445868
- J. N. Reddy and J. T. Oden, Mixed finite-element approximations of linear boundary-value problems, Quart. Appl. Math. 33 (1975/76), no. 3, 255–280. MR 451782, DOI 10.1090/S0033-569X-1975-0451782-0
- John E. Osborn, Spectral approximation for compact operators, Math. Comput. 29 (1975), 712–725. MR 0383117, DOI 10.1090/S0025-5718-1975-0383117-3
- Robert S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031–1060. MR 0215084
- P.-A. Raviart and J. M. Thomas, Primal hybrid finite element methods for $2$nd order elliptic equations, Math. Comp. 31 (1977), no. 138, 391–413. MR 431752, DOI 10.1090/S0025-5718-1977-0431752-8 M. I. VISHIK, "The Sobolev-Slobodetski spaces of changing order with weighted norms and applications to elliptic boundary value problems of mixed type," Partial Differential Equations, "Nauka", Moscow, 1970, pp. 71-76. M. I. VISHIK & G. I. ESKIN, "Equations in convolutions in a bounded region," Russian Math. Surveys, v. 20, 1965, pp. 85-151. M. I. VISHIK & G. I. ESKIN, "Elliptic equations in convolution in a bounded domain and their applications," Russian Math. Surveys, v. 22, 1967, pp. 13-75.
- M. I. Višik and G. I. Èskin, Sobolev-Slobodeckiĭ spaces of variable order with weighted norms, and their applications to mixed boundary value problems, Sibirsk. Mat. . 9 (1968), 973–997 (Russian). MR 0236696
- André Unterberger, Sobolev spaces of variable order and problems of convexity for partial differential operators with constant coefficients, Colloque International, C.N.R.S. sur les Équations aux Dérivées Partielles Linéaires (Univ. Paris-Sud, Orsay, 1972) Astérisque, vol. 2, Soc. Math. France, Paris, 1973, pp. 325–341. MR 0393774
- André Unterberger, Espaces de Sobolev d’ordre variable et applications, Séminaire Goulaouic-Schwartz (1970/1971), Équations aux dérivées partielles et analyse fonctionnelle, Exp. No. 5, Centre de Math., École Polytech., Paris, 1971, pp. 19 pp. (unpaged errata following Annex. No. 1) (French). MR 0394180
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Math. Comp. 32 (1978), 991-1023
- MSC: Primary 65L15
- DOI: https://doi.org/10.1090/S0025-5718-1978-0501962-0
- MathSciNet review: 0501962