Eigenvalue approximation by the finite element method: the method of Lagrange multipliers
Author:
William G. Kolata
Journal:
Math. Comp. 33 (1979), 63-76
MSC:
Primary 65N25; Secondary 65N30
DOI:
https://doi.org/10.1090/S0025-5718-1979-0514810-0
MathSciNet review:
514810
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The purpose of this paper is to investigate the application of the finite element method of Lagrange multipliers to the problem of approximating the eigenvalues of a selfadjoint elliptic operator satisfying Dirichlet boundary conditions. Although the Lagrange multiplier method is not a Rayleigh-Ritz-Galerkin approximation scheme, it is shown that at least asymptotically the Lagrange multiplier method has some of the properties of such a scheme. In particular, the approximate eigenvalues are greater than or equal to the exact eigenvalues and can be computed from a nonnegative definite matrix problem. It is also shown that the known estimates for the eigenvalue error are optimal.
- Ivo Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1972/73), 179–192. MR 359352, DOI https://doi.org/10.1007/BF01436561 I. BABUŠKA & A. K. AZIZ, "Survey lectures on the mathematical foundations of the finite element method," The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York, 1973, pp. 5-359.
- J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), 525–549. MR 366029, DOI https://doi.org/10.1090/S0025-5718-1973-0366029-9
- James H. Bramble and Alfred H. Schatz, Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions, Comm. Pure Appl. Math. 23 (1970), 653–675. MR 267788, DOI https://doi.org/10.1002/cpa.3160230408
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
- George J. Fix, Eigenvalue approximation by the finite element method, Advances in Math. 10 (1973), 300–316. MR 341900, DOI https://doi.org/10.1016/0001-8708%2873%2990113-8
- George M. Fix, Hybrid finite element methods, SIAM Rev. 18 (1976), no. 3, 460–484. MR 416066, DOI https://doi.org/10.1137/1018077
- William G. Kolata, Approximation in variationally posed eigenvalue problems, Numer. Math. 29 (1977/78), no. 2, 159–171. MR 482047, DOI https://doi.org/10.1007/BF01390335 W. G. KOLATA, "On solving a matrix problem arising in a hybrid finite element method." (Preprint.)
- Jindřich Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR 0227584 J. NITSCHE, "A projection method for Dirichlet problems using subspaces with nearly zero boundary conditions." (Preprint.)
- J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36 (1971), 9–15 (German). MR 341903, DOI https://doi.org/10.1007/BF02995904
- John E. Osborn, Spectral approximation for compact operators, Math. Comput. 29 (1975), 712–725. MR 0383117, DOI https://doi.org/10.1090/S0025-5718-1975-0383117-3
Retrieve articles in Mathematics of Computation with MSC: 65N25, 65N30
Retrieve articles in all journals with MSC: 65N25, 65N30
Additional Information
Keywords:
Finite element method,
Lagrange multipliers,
selfadjoint elliptic eigenvalue problems
Article copyright:
© Copyright 1979
American Mathematical Society