Minimax approximate solutions of linear boundary value problems

Authors:
Darrell Schmidt and Kenneth L. Wiggins

Journal:
Math. Comp. **33** (1979), 139-148

MSC:
Primary 65L10

DOI:
https://doi.org/10.1090/S0025-5718-1979-0514815-X

MathSciNet review:
514815

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Define the operator $D:C”[0,\tau ] \to C[0,\tau ]$ by $D[u] = u” - {a_0}u\prime - {a_1}u$ where ${a_0},{a_1} \in C[0,\tau ]$ and consider the two point boundary value problem $({\text {BVP}})\;D[y](x) = {a_2}(x)$, $x \in [0,\tau ]$, ${N_0}[y] = {\alpha _0}y(0) + {\alpha _1}y\prime (0) = {\alpha _2}$, ${N_\tau }[y] = {\beta _0}y(\tau ) + {\beta _1}y\prime (\tau ) = {\beta _2}$ where ${a_2} \in C[0,\tau ]$, $\alpha _0^2 + \alpha _1^2 \ne 0$ and $\beta _0^2 + \beta _1^2 \ne 0$. Let ${\Pi _k}$ denote the set of polynomials of degree at most *k* and define the approximating set ${\mathcal {P}_k} = \{ p \in {\Pi _k}:{N_0}[p] = {\alpha _2},{N_\tau }[p] = {\beta _2}\}$. Then for each $k \geqslant 3$ there exists ${p_k} \in {\mathcal {P}_k}$ satisfying $\left \| {D[{p_k}] - {a_2}} \right \| = {\inf _{p \in {\mathcal {P}_k}}}\left \| {D[p] - {a_2}} \right \| = {\delta _k}$, where $\left \| \cdot \right \|$ denotes the uniform norm on $C[0,\tau ]$. If the homogeneous BVP $D[y] = 0$, ${N_0}[y] = {N_\tau }[y] = 0$ has no nontrivial solutions, then the nonhomogeneous BVP has a unique solution *y* and ${\lim _{k \to \infty }}\left \| {p_k^{(i)} - {y^{(i)}}} \right \| = 0$ for $i = 0,1,2$. If *X* denotes a closed subset of $[0,\tau ]$ and \[ {\delta _{k,X}} = \inf \limits _{p \in {\mathcal {P}_k}} \max \limits _{x \in X} |D[p](x) - {a_2}(x)|,\] then for each $\varepsilon > 0$ there exists $\delta > 0$ such that $d(x) \leqslant \delta$ implies that $0 \leqslant {\delta _k} - {\delta _{k,X}} \leqslant \varepsilon$, where $d(X)$ denotes the density of *X* in $[0,\tau ]$. Several numerical examples are given.

- Glenn Allinger and Myron Henry,
*Approximate solutions of differential equations with deviating arguments*, SIAM J. Numer. Anal.**13**(1976), no. 3, 412–426. MR**405875**, DOI https://doi.org/10.1137/0713037 - E. W. Cheney,
*Introduction to approximation theory*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0222517** - Myron S. Henry,
*Best approximate solutions of nonlinear differential equations*, J. Approximation Theory**3**(1970), 59–65. MR**254479**, DOI https://doi.org/10.1016/0021-9045%2870%2990060-2 - Myron S. Henry and Kenneth L. Wiggins,
*Applications of approximation theory to the initial value problem*, J. Approximation Theory**17**(1976), no. 1, 66–85. MR**413498**, DOI https://doi.org/10.1016/0021-9045%2876%2990112-x - A. G. Petsoulas,
*The approximate solution of Volterra integral equations*, J. Approximation Theory**14**(1975), no. 2, 152–159. MR**423028**, DOI https://doi.org/10.1016/0021-9045%2875%2990086-6 - P. M. Prenter,
*Splines and variational methods*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1975. Pure and Applied Mathematics. MR**0483270** - Hans Sagan,
*Boundary and eigenvalue problems in mathematical physics*, John Wiley & Sons, Inc., New York-London, 1961. MR**0118932**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10

Retrieve articles in all journals with MSC: 65L10

Additional Information

Keywords:
Minimax approximate solution,
uniform approximation,
boundary value problem

Article copyright:
© Copyright 1979
American Mathematical Society