Minimax approximate solutions of linear boundary value problems

Authors:
Darrell Schmidt and Kenneth L. Wiggins

Journal:
Math. Comp. **33** (1979), 139-148

MSC:
Primary 65L10

DOI:
https://doi.org/10.1090/S0025-5718-1979-0514815-X

MathSciNet review:
514815

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Define the operator by where and consider the two point boundary value problem , , , where , and . Let denote the set of polynomials of degree at most *k* and define the approximating set . Then for each there exists satisfying , where denotes the uniform norm on . If the homogeneous BVP , has no nontrivial solutions, then the nonhomogeneous BVP has a unique solution *y* and for . If *X* denotes a closed subset of and

*X*in . Several numerical examples are given.

**[1]**Glenn Allinger and Myron Henry,*Approximate solutions of differential equations with deviating arguments*, SIAM J. Numer. Anal.**13**(1976), no. 3, 412–426. MR**405875**, https://doi.org/10.1137/0713037**[2]**E. W. Cheney,*Introduction to approximation theory*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0222517****[3]**Myron S. Henry,*Best approximate solutions of nonlinear differential equations*, J. Approximation Theory**3**(1970), 59–65. MR**254479**, https://doi.org/10.1016/0021-9045(70)90060-2**[4]**Myron S. Henry and Kenneth L. Wiggins,*Applications of approximation theory to the initial value problem*, J. Approximation Theory**17**(1976), no. 1, 66–85. MR**413498**, https://doi.org/10.1016/0021-9045(76)90112-x**[5]**A. G. Petsoulas,*The approximate solution of Volterra integral equations*, J. Approximation Theory**14**(1975), no. 2, 152–159. MR**423028**, https://doi.org/10.1016/0021-9045(75)90086-6**[6]**P. M. Prenter,*Splines and variational methods*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1975. Pure and Applied Mathematics. MR**0483270****[7]**Hans Sagan,*Boundary and eigenvalue problems in mathematical physics*, John Wiley & Sons, Inc., New York-London, 1961. MR**0118932**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10

Retrieve articles in all journals with MSC: 65L10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0514815-X

Keywords:
Minimax approximate solution,
uniform approximation,
boundary value problem

Article copyright:
© Copyright 1979
American Mathematical Society