Minkowski reduction of integral matrices
Author:
John L. Donaldson
Journal:
Math. Comp. 33 (1979), 201216
MSC:
Primary 10E25; Secondary 15A36, 68C05
DOI:
https://doi.org/10.1090/S00255718197905148197
MathSciNet review:
514819
Fulltext PDF Free Access
Abstract  References  Similar Articles  Additional Information
Abstract: In 1905 Hermann Minkowski introduced his theory of reduction of positive definite quadratic forms. Recently, Hans J. Zassenhaus has suggested that this theory can be applied to the problem of row reduction of matrices of integers. Computational investigations have shown that for matrices with more columns than rows, the number of steps required for reduction decreases drastically. In this paper it is proved that as the number of columns increases, the probability that a matrix is Minkowski reduced approaches one. This fact is the motivation behind the introduction of a modified version of Minkowski reduction, resulting in a reduction procedure more suitable for computation.

HERMANN MINKOWSKI, Gesammelte Abhandlungen. II, pp. 53100.
HANS ZASSENHAUS, "Bilinear spaces and reduction," Unpublished manuscript.
C. HERMITE, J. Reine Angew. Math., v. 41, 1851, pp. 191216.
C. C. MacDUFFEE, The Theory of Matrices, Chelsea, New York, 1956.
 Gordon H. Bradley, Algorithms for Hermite and Smith normal matrices and linear Diophantine equations, Math. Comp. 25 (1971), 897–907. MR 301909, DOI https://doi.org/10.1090/S0025571819710301909X
 J. Barkley Rosser, A method of computing exact inverses of matrices with integer coefficients, J. Research Nat. Bur. Standards 49 (1952), 349–358. MR 0055796 W. A. BLANKINSHIP, Comm. ACM, v. 9, 1966, p. 513.
 A. Chatelet, Sur certains ensembles de tableaux et leur application à la théorie des nombres, Ann. Sci. École Norm. Sup. (3) 28 (1911), 105–202 (French). MR 1509137
 Hermann Weyl, Theory of reduction for arithmetical equivalence, Trans. Amer. Math. Soc. 48 (1940), 126–164. MR 2345, DOI https://doi.org/10.1090/S00029947194000023452
 G. J. O. Jameson, Topology and normed spaces, Chapman and Hall, London; Halsted Press [John Wiley & Sons], New York, 1974. MR 0463890
 P. W. Aitchison, Two finiteness theorems in the Minkowski theory of reduction, J. Austral. Math. Soc. 14 (1972), 336–351. MR 0318066 S. S. RYSKOV, Soviet Math. Dokl., v. 12, 1971, pp. 946950.
 A. Rényi, Probability theory, NorthHolland Publishing Co., AmsterdamLondon; American Elsevier Publishing Co., Inc., New York, 1970. Translated by László Vekerdi; NorthHolland Series in Applied Mathematics and Mechanics, Vol. 10. MR 0315747
 B. L. van der Waerden, Die Reduktionstheorie der positiven quadratischen Formen, Acta Math. 96 (1956), 265–309 (German). MR 82513, DOI https://doi.org/10.1007/BF02392364
 Claude Chevalley, Fundamental concepts of algebra, Academic Press Inc., New York, 1956. MR 0082459 P. TAMMELA, Soviet Math. Dokl., v. 14, 1973, p. 651.
 Marvin Marcus, Finite dimensional multilinear algebra. Part 1, Marcel Dekker, Inc., New York, 1973. Pure and Applied Mathematics, Vol. 23. MR 0352112
Retrieve articles in Mathematics of Computation with MSC: 10E25, 15A36, 68C05
Retrieve articles in all journals with MSC: 10E25, 15A36, 68C05
Additional Information
Article copyright:
© Copyright 1979
American Mathematical Society