Minkowski reduction of integral matrices

Author:
John L. Donaldson

Journal:
Math. Comp. **33** (1979), 201-216

MSC:
Primary 10E25; Secondary 15A36, 68C05

DOI:
https://doi.org/10.1090/S0025-5718-1979-0514819-7

MathSciNet review:
514819

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In 1905 Hermann Minkowski introduced his theory of reduction of positive definite quadratic forms. Recently, Hans J. Zassenhaus has suggested that this theory can be applied to the problem of row reduction of matrices of integers. Computational investigations have shown that for matrices with more columns than rows, the number of steps required for reduction decreases drastically. In this paper it is proved that as the number of columns increases, the probability that a matrix is Minkowski reduced approaches one. This fact is the motivation behind the introduction of a modified version of Minkowski reduction, resulting in a reduction procedure more suitable for computation.

**[1]**HERMANN MINKOWSKI,*Gesammelte Abhandlungen*. II, pp. 53-100.**[2]**HANS ZASSENHAUS, "Bilinear spaces and reduction," Unpublished manuscript.**[3]**C. HERMITE,*J. Reine Angew. Math.*, v. 41, 1851, pp. 191-216.**[4]**C. C. MacDUFFEE,*The Theory of Matrices*, Chelsea, New York, 1956.**[5]**Gordon H. Bradley,*Algorithms for Hermite and Smith normal matrices and linear Diophantine equations*, Math. Comp.**25**(1971), 897–907. MR**301909**, https://doi.org/10.1090/S0025-5718-1971-0301909-X**[6]**J. Barkley Rosser,*A method of computing exact inverses of matrices with integer coefficients*, J. Research Nat. Bur. Standards**49**(1952), 349–358. MR**0055796****[7]**W. A. BLANKINSHIP,*Comm. ACM*, v. 9, 1966, p. 513.**[8]**A. Chatelet,*Sur certains ensembles de tableaux et leur application à la théorie des nombres*, Ann. Sci. École Norm. Sup. (3)**28**(1911), 105–202 (French). MR**1509137****[9]**Hermann Weyl,*Theory of reduction for arithmetical equivalence*, Trans. Amer. Math. Soc.**48**(1940), 126–164. MR**2345**, https://doi.org/10.1090/S0002-9947-1940-0002345-2**[10]**G. J. O. Jameson,*Topology and normed spaces*, Chapman and Hall, London; Halsted Press [John Wiley & Sons], New York, 1974. MR**0463890****[11]**P. W. Aitchison,*Two finiteness theorems in the Minkowski theory of reduction*, J. Austral. Math. Soc.**14**(1972), 336–351. MR**0318066****[12]**S. S. RYSKOV,*Soviet Math. Dokl.*, v. 12, 1971, pp. 946-950.**[13]**A. Rényi,*Probability theory*, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1970. Translated by László Vekerdi; North-Holland Series in Applied Mathematics and Mechanics, Vol. 10. MR**0315747****[14]**B. L. van der Waerden,*Die Reduktionstheorie der positiven quadratischen Formen*, Acta Math.**96**(1956), 265–309 (German). MR**82513**, https://doi.org/10.1007/BF02392364**[15]**Claude Chevalley,*Fundamental concepts of algebra*, Academic Press Inc., New York, 1956. MR**0082459****[16]**P. TAMMELA,*Soviet Math. Dokl.*, v. 14, 1973, p. 651.**[17]**Marvin Marcus,*Finite dimensional multilinear algebra. Part 1*, Marcel Dekker, Inc., New York, 1973. Pure and Applied Mathematics, Vol. 23. MR**0352112**

Retrieve articles in *Mathematics of Computation*
with MSC:
10E25,
15A36,
68C05

Retrieve articles in all journals with MSC: 10E25, 15A36, 68C05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0514819-7

Article copyright:
© Copyright 1979
American Mathematical Society