A search for large twin prime pairs
Authors:
R. E. Crandall and M. A. Penk
Journal:
Math. Comp. 33 (1979), 383388
MSC:
Primary 10A25; Secondary 10J10
DOI:
https://doi.org/10.1090/S00255718197905148343
MathSciNet review:
514834
Fulltext PDF Free Access
Abstract  References  Similar Articles  Additional Information
Abstract: Two methods are discussed for finding large integers m such that $m  1$ and $m + 1$ are both primes. Eight such numbers m of magnitudes 22, 22, 32, 64, 136, 154, 203, and 303 digits are listed; together with primitive roots (for $m + 1$) and LucasLehmer parameters (for $m  1$). The HardyLittlewood twin prime conjecture is supported by a statistical test involving the generation of 249 twin prime pairs in the 50to54 digit region.

V. BRUN, "La série $1/5 + 1/7 + 1/11 + 1/13 + \cdots$ est convergente ou finie," Bull. Sci. Math., v. 43, 1919, pp. 104, 124128; Chapter XVI.
 G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), no. 1, 1–70. MR 1555183, DOI https://doi.org/10.1007/BF02403921 D. H. LEHMER, "Tables concerning the distribution of primes up to 37 millions," MTAC, v. 13, 1959, pp. 5657, UMT 3. G. H. HARDY & E. M. WRIGHT’, An Introduction to the Theory of Numbers, 4th ed., Clarendon Press, Oxford, 1965.
 Richard P. Brent, Irregularities in the distribution of primes and twin primes, Math. Comp. 29 (1975), 43–56. MR 369287, DOI https://doi.org/10.1090/S00255718197503692871
 D. H. Lehmer, Computer technology applied to the theory of numbers, Studies in Number Theory, Math. Assoc. Amer. (distributed by PrenticeHall, Englewood Cliffs, N.J.), 1969, pp. 117–151. MR 0246815
 Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., AddisonWesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms; AddisonWesley Series in Computer Science and Information Processing. MR 633878
 Richard K. Guy, How to factor a number, Proceedings of the Fifth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975) Utilitas Math. Publ., Winnipeg, Man., 1976, pp. 49–89. Congressus Numerantium, No. XVI. MR 0404120
 J. M. Pollard, A Monte Carlo method for factorization, Nordisk Tidskr. Informationsbehandling (BIT) 15 (1975), no. 3, 331–334. MR 392798, DOI https://doi.org/10.1007/bf01933667
Retrieve articles in Mathematics of Computation with MSC: 10A25, 10J10
Retrieve articles in all journals with MSC: 10A25, 10J10
Additional Information
Keywords:
prime,
twin primes,
HardyLittlewood conjecture
Article copyright:
© Copyright 1979
American Mathematical Society