## Analysis of optimal finite-element meshes in $\textbf {R}^{1}$

HTML articles powered by AMS MathViewer

- by I. Babuška and W. C. Rheinboldt PDF
- Math. Comp.
**33**(1979), 435-463 Request permission

## Abstract:

A theory of a posteriori estimates for the finite-element method was developed earlier by the authors. Based on this theory, for a two-point boundary value problem the existence of a unique optimal mesh distribution is proved and its properties analyzed. This mesh is characterized in terms of certain, easily computable local error indicators which in turn allow for a simple adaptive construction of the mesh and also permit the computation of a very effective a posteriori error bound. While the error estimates are asymptotic in nature, numerical experiments show the results to be excellent already for 10## References

- Naum I. Akhiezer,
*The calculus of variations*, A Blaisdell Book in the Pure and Applied Sciences, Blaisdell Publishing Co. (a division of Random House), New York-London, 1962. Translated from the Russian by Aline H. Frink. MR**0142019**
I. BABUŠKA, "The self-adaptive approach in the finite element method," - I. Babuška and W. C. Rheinboldt,
*Error estimates for adaptive finite element computations*, SIAM J. Numer. Anal.**15**(1978), no. 4, 736–754. MR**483395**, DOI 10.1137/0715049 - Werner C. Rheinboldt,
*Numerical continuation methods for finite element applications*, Formulations and computational algorithms in finite element analysis (U.S.-Germany Sympos., Mass. Inst. Tech., Cambridge, Mass., 1976) M.I.T. Press, Cambridge, Mass., 1977, pp. 599–631. MR**0474782**
I. BABUSKA, W. RHEINBOLDT & C. MESZTENYI, - Hermann G. Burchard,
*Splines (with optimal knots) are better*, Applicable Anal.**3**(1973/74), 309–319. MR**399708**, DOI 10.1080/00036817408839073 - H. G. Burchard and D. F. Hale,
*Piecewise polynomial approximation on optimal meshes*, J. Approximation Theory**14**(1975), no. 2, 128–147. MR**374761**, DOI 10.1016/0021-9045(75)90084-2 - W. E. Carroll and R. M. Barker,
*A theorem for optimum finite-element idealizations*, Internat. J. Solids Structures**9**(1973), 883–895 (English, with Russian summary). MR**337119**, DOI 10.1016/0020-7683(73)90011-5 - Carl de Boor,
*Good approximation by splines with variable knots*, Spline functions and approximation theory (Proc. Sympos., Univ. Alberta, Edmonton, Alta., 1972) Internat. Ser. Numer. Math., Vol. 21, Birkhäuser, Basel, 1973, pp. 57–72. MR**0403169**
C. deBOOR, - Carl de Boor and Blâir Swartz,
*Collocation at Gaussian points*, SIAM J. Numer. Anal.**10**(1973), 582–606. MR**373328**, DOI 10.1137/0710052 - V. E. Denny and R. B. Landis,
*A new method for solving two-point boundary value problems using optimal node distribution*, J. Comput. Phys.**9**(1972), 120–137. MR**295583**, DOI 10.1016/0021-9991(72)90039-3 - T. E. Hull,
*Numerical solutions of initial value problems for ordinary differential equations*, Numerical solutions of boundary value problems for ordinary differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1974) Academic Press, New York, 1975, pp. 3–26. MR**0403226** - H. B. Keller,
*Numerical solution of boundary value problems for ordinary differential equations: survey and some recent results on difference methods*, Numerical solutions of boundary value problems for ordinary differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1974) Academic Press, New York, 1975, pp. 27–88. MR**0451742** - M. Lentini and V. Pereyra,
*Boundary problem solvers for first order systems based on deferred corrections*, Numerical solutions of boundary value problems for ordinary differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1974) Academic Press, New York, 1975, pp. 293–315. MR**0488787**
R. J. MELOSH & D. E. KILLIAN, - Joachim A. Nitsche and Alfred H. Schatz,
*Interior estimates for Ritz-Galerkin methods*, Math. Comp.**28**(1974), 937–958. MR**373325**, DOI 10.1090/S0025-5718-1974-0373325-9 - G. M. Phillips,
*Error estimates for best polynomial approximations*, Approximation Theory (Proc. Sympos., Lancaster, 1969) Academic Press, London, 1970, pp. 1–6. MR**0277970** - Carl E. Pearson,
*On a differential equation of boundary layer type*, J. Math. and Phys.**47**(1968), 134–154. MR**228189**, DOI 10.1002/sapm1968471134
G. SEWELL, "An adaptive computer program for the solution of ${\operatorname {Div}}(p(x,y)\operatorname {grad}\,u) = f(x,y,u)$ on a polygonal region," - Gilbert Strang and George J. Fix,
*An analysis of the finite element method*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. MR**0443377**
D. J. TURCKE, "Further developments in grid selection procedures in the finite element method,"

*The Mathematics of Finite Elements and Applications*II,

*MAFELAP*1975 (J. R. Whiteman, Ed.), Academic Press, London, 1976, pp. 125-142. I. BABUŠKA & W. RHEINBOLDT,

*A-Posteriori Error Estimates for the Finite Element Method*, Computer Science Technical Report TR-581, University of Maryland, 1977; Internat.

*J. Numer. Methods Engrg.*, v. 12, 1978, pp. 1597-1615.

*Self-Adaptive Refinement in the Finite Element Method*, Computer Science Technical Report TR-375, University of Maryland, 1975.

*Good Approximations with Variable Knots*. II, Lecture Notes in Math., Vol. 363, Springer-Verlag, Berlin, 1973, pp. 12-20. C. deBOOR & J. R. RICE,

*An Adaptive Algorithm for Multivariate Approximation Giving Optimal Convergence Rates*, Mathematics Research Center, MRC Technical Summary Report 1773, University of Wisconsin, 1977.

*Finite Element Analysis to Attain a Prespecified Accuracy*, Presented at 2nd National Symposium on Computerized Structural Analysis, George Washington University, Washington, D.C., 1976. (Preprint.) R. J. MELOSH & P. V. MARCAL, "An energy basis for mesh refinement of structural continua,"

*Internat. J. Numer. Methods Engrg.*, v. 11, 1977, pp. 1083-1091.

*The Mathematics of Finite Elements and Applications*II,

*MAFELAP*1975 (J. Whiteman, Ed.), Academic Press, London, 1976, pp. 125-144.

*Proc. Fifth Canadian Congress Appl. Mech.*, University of New Brunswick, Frederickton, N.B., Canada, 1975. D. J. TURCKE & G. M. McNEICE, "A variational approach to grid optimization in the finite element method,"

*Conf. on Variational Methods in Engineering*, Southhampton University, England, 1972. D. J. TURCKE & G. M. McNEICE, "Guidelines for selecting finite element grids based on an optimization study,"

*Computers and Structures*, v. 4, 1973, pp. 499-519.

## Additional Information

- © Copyright 1979 American Mathematical Society
- Journal: Math. Comp.
**33**(1979), 435-463 - MSC: Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1979-0521270-2
- MathSciNet review: 521270