Multistep-Galerkin methods for hyperbolic equations
HTML articles powered by AMS MathViewer
- by Vassilios A. Dougalis PDF
- Math. Comp. 33 (1979), 563-584 Request permission
Abstract:
Multistep methods for first- and second-order ordinary differential equations are used for the full discretizations of standard Galerkin approximations to the initial-periodic boundary value problem for first-order linear hyperbolic equations in one space dimension and to the initial-boundary value problem for second-order linear selfadjoint hyperbolic equations in many space dimensions. ${L^2}$-error bounds of optimal order in space and time are achieved for large classes of such multistep methods.References
- Garth A. Baker, A finite element method for first order hyperbolic equations, Math. Comput. 29 (1975), no. 132, 995–1006. MR 0400744, DOI 10.1090/S0025-5718-1975-0400744-5 G. A. BAKER & J. H. BRAMBLE, Semidiscrete and Single Step Fully Discrete Approximations for Second Order Hyperbolic Equations, Rep. No. 22, Centre de Mathématiques Appliqueés de l’Ecole Polytechnique, Paris, 1977. M. CROUZEIX, Sur l’Approximation des Équations Différentielles Opérationelles Linéaires par des Méthodes de Runge-Kutta, Thèse de Doctorat d’Etat, Université Paris VI, 1975.
- J. E. Dendy, Two methods of Galerkin type achieving optimum $L^{2}$ rates of convergence for first order hyperbolics, SIAM J. Numer. Anal. 11 (1974), 637–653. MR 353695, DOI 10.1137/0711052 V. A. DOUGALIS, High Order Fully Discrete Galerkin Approximations to Hyperbolic Equations, Ph. D. Thesis, Harvard University, May 1976.
- Todd Dupont, $L^{2}$-estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal. 10 (1973), 880–889. MR 349045, DOI 10.1137/0710073
- Todd Dupont, Galerkin methods for first order hyperbolics: an example, SIAM J. Numer. Anal. 10 (1973), 890–899. MR 349046, DOI 10.1137/0710074
- G. Fix and N. Nassif, On finite element approximations to time-dependent problems, Numer. Math. 19 (1972), 127–135. MR 311122, DOI 10.1007/BF01402523
- E. Gekeler, Linear multistep methods and Galerkin procedures for initial boundary value problems, SIAM J. Numer. Anal. 13 (1976), no. 4, 536–548. MR 431749, DOI 10.1137/0713046
- Peter Henrici, Discrete variable methods in ordinary differential equations, John Wiley & Sons, Inc., New York-London, 1962. MR 0135729
- J. D. Lambert, Computational methods in ordinary differential equations, John Wiley & Sons, London-New York-Sydney, 1973. Introductory Mathematics for Scientists and Engineers. MR 0423815
- P. Lesaint, Finite element methods for symmetric hyperbolic equations, Numer. Math. 21 (1973/74), 244–255. MR 341902, DOI 10.1007/BF01436628 J. L. LIONS & E. MAGENES, Problèmes aux Limites Non Homogènes et Applications, Vols. I & II, Dunod, Paris, 1968.
- M. S. Mock, Projection methods with different trial and test spaces, Math. Comp. 30 (1976), no. 135, 400–416. MR 423840, DOI 10.1090/S0025-5718-1976-0423840-6
- M. S. Mock, Explicit finite element schemes for first order symmetric hyperbolic systems, Numer. Math. 26 (1976), no. 4, 367–378. MR 448955, DOI 10.1007/BF01409959 I. J. SCHOENBERG, "Contributions to the problem of approximation of equidistant data by analytic functions," Parts A and B, Quart. Appl. Math., v. 4, 1946, pp. 45-99, 112-141.
- Gilbert Strang, The finite element method and approximation theory, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 547–583. MR 0287723
- Blair Swartz and Burton Wendroff, The relative efficiency of finite difference and finite element methods. I. Hyperbolic problems and splines, SIAM J. Numer. Anal. 11 (1974), 979–993. MR 362952, DOI 10.1137/0711076
- Vidar Thomée, Convergence estimates for semi-discrete Galerkin methods for initial-value problems, Numerische, insbesondere approximationstheoretische Behandlung von Funktionalgleichungen (Tagung, Math. Forschungsinst., Oberwolfach, 1972) Lecture Notes in Math., Vol. 333, Springer, Berlin, 1973, pp. 243–262. MR 0458948
- Vidar Thomée and Burton Wendroff, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal. 11 (1974), 1059–1068. MR 371088, DOI 10.1137/0711081
- Lars Wahlbin, A modified Galerkin procedure with Hermite cubics for hyperbolic problems, Math. Comput. 29 (1975), no. 132, 978–984. MR 0388809, DOI 10.1090/S0025-5718-1975-0388809-8 B. WENDROFF, On Finite Elements for Equations of Evolution, Rep. LA-DC-72-1220, Los Alamos, N. M., 1972.
- Mary Fanett Wheeler, A priori $L_{2}$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723–759. MR 351124, DOI 10.1137/0710062
- Miloš Zlámal, Finite element multistep discretizations of parabolic boundary value problems, Math. Comp. 29 (1975), 350–359. MR 371105, DOI 10.1090/S0025-5718-1975-0371105-2
Additional Information
- © Copyright 1979 American Mathematical Society
- Journal: Math. Comp. 33 (1979), 563-584
- MSC: Primary 65M10; Secondary 65M15, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1979-0521277-5
- MathSciNet review: 521277