## A simplified Galerkin method for hyperbolic equations

HTML articles powered by AMS MathViewer

- by R. C. Y. Chin, G. W. Hedstrom and K. E. Karlsson PDF
- Math. Comp.
**33**(1979), 647-658 Request permission

## Abstract:

We modify a Galerkin method for nonlinear hyperbolic equations so that it becomes a simpler method of lines, which may be viewed as a collocation method. The high order of accuracy is preserved. We present a linear wave analysis of the scheme and discuss some aspects of nonlinear problems. Our numerical experiments indicate that the addition of a proper artificial viscosity makes the method competitive and the common difference schemes, even when the solution has discontinuities.## References

*Approximation by hill functions*, Comment. Math. Univ. Carolinae**11**(1970), 787–811. MR**292309**- Edward R. Benton and George W. Platzman,
*A table of solutions of the one-dimensional Burgers equation*, Quart. Appl. Math.**30**(1972), 195–212. MR**306736**, DOI 10.1090/S0033-569X-1972-0306736-4 - Léon Brillouin,
*Wave propagation and group velocity*, Pure and Applied Physics, Vol. 8, Academic Press, New York-London, 1960. MR**0108217**
T. J. BROMWICH, - R. C. Y. Chin and G. W. Hedstrom,
*A dispersion analysis for difference schemes: tables of generalized Airy functions*, Math. Comp.**32**(1978), no. 144, 1163–1170. MR**494982**, DOI 10.1090/S0025-5718-1978-0494982-6 - J. Albrecht and L. Collatz (eds.),
*Numerische Behandlung von Differentialgleichungen. Band 3*, Internationale Schriftenreihe zur Numerischen Mathematik [International Series of Numerical Mathematics], vol. 56, Birkhäuser Verlag, Basel, 1981 (German). MR**784038**, DOI 10.1007/978-3-0348-5454-2 - B. Fornberg,
*On the instability of leap-frog and Crank-Nicolson approximations of a nonlinear partial differential equation*, Math. Comp.**27**(1973), 45–57. MR**395249**, DOI 10.1090/S0025-5718-1973-0395249-2 - C. William Gear,
*Numerical initial value problems in ordinary differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0315898** - James Glimm and Peter D. Lax,
*Decay of solutions of systems of nonlinear hyperbolic conservation laws*, Memoirs of the American Mathematical Society, No. 101, American Mathematical Society, Providence, R.I., 1970. MR**0265767**
A. C. HINDMARSH, GEAR: - Leon Lapidus and John H. Seinfeld,
*Numerical solution of ordinary differential equations*, Mathematics in Science and Engineering, Vol. 74, Academic Press, New York-London, 1971. MR**0281355**
R. D. RICHTMEYER & K. W. MORTON, - S. I. Serdjukova,
*The oscillations that arise in numerical calculations of the discontinuous solutions of differential equations*, Ž. Vyčisl. Mat i Mat. Fiz.**11**(1971), 411–424 (Russian). MR**284018** - Gilbert Strang,
*The finite element method and approximation theory*, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 547–583. MR**0287723** - Gilbert Strang and George J. Fix,
*An analysis of the finite element method*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. MR**0443377** - Blair Swartz and Burton Wendroff,
*Generalized finite-difference schemes*, Math. Comp.**23**(1969), 37–49. MR**239768**, DOI 10.1090/S0025-5718-1969-0239768-7 - Blair Swartz and Burton Wendroff,
*The relation between the Galerkin and collocation methods using smooth splines*, SIAM J. Numer. Anal.**11**(1974), 994–996. MR**362953**, DOI 10.1137/0711077 - Blair Swartz and Burton Wendroff,
*The relative efficiency of finite difference and finite element methods. I. Hyperbolic problems and splines*, SIAM J. Numer. Anal.**11**(1974), 979–993. MR**362952**, DOI 10.1137/0711076 - E. L. Allgower and M. M. Jeppson,
*The approximation of solutions of nonlinear elliptic boundary value problems having several solutions*, Numerische, insbesondere approximationstheoretische Behandlung von Funktionalgleichungen (Tagung, Math. Forschungsinst., Oberwolfach, 1972) Lecture Notes in Math., Vol. 333, Springer, Berlin, 1973, pp. 1–20. MR**0433923** - Vidar Thomée and Burton Wendroff,
*Convergence estimates for Galerkin methods for variable coefficient initial value problems*, SIAM J. Numer. Anal.**11**(1974), 1059–1068. MR**371088**, DOI 10.1137/0711081
R. VICHNEVETSKY & B. PEIFFER, "Error waves in finite element and finite difference methods for hyperbolic equations," in

*An Introduction to the Theory of Infinite Series*, Macmillan, London, 1949.

*Ordinary Differential Equation System Solver*, Lawrence Livermore Laboratory Report UCID-30001, Rev. 1. A.C.C. No. 592, GEAR. Argonne Code Center, Building 221, Argonne National Laboratory, Argonne, Illinois.

*Difference Methods for Initial-Value Problems*, 2nd ed., Interscience, New York, 1967. MR

**36**#3515. I. J. SCHOENBERG, "Contributions to the approximation of equidistant data by analytic functions,"

*Quart. Appl. Math.*, v. 4, 1946, pp. 45-99 and 112-141. MR

**7**, 487 and

**8**, 55.

*Advances in Computer Methods for Partial Differential Equations*, R. Vichnevetsky, (ed.), Assoc. Int. Calcul Analogique, Ghent, Belgium, 1975, pp. 1-6. R. VICHNEVETSKY & F. DE SHUTTER, "A frequency analysis of finite difference and finite element methods for initial-value problems," in

*Advances in Computer Methods for Partial Differential Equations*, R. Vichnevetsky, (ed.), Assoc. Int. Calcul Analogique, Ghent, Belgium, 1975, pp. 46-52.

## Additional Information

- © Copyright 1979 American Mathematical Society
- Journal: Math. Comp.
**33**(1979), 647-658 - MSC: Primary 65M10; Secondary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1979-0521280-5
- MathSciNet review: 521280