## Implementation aspects of band Lanczos algorithms for computation of eigenvalues of large sparse symmetric matrices

HTML articles powered by AMS MathViewer

- by Axel Ruhe PDF
- Math. Comp.
**33**(1979), 680-687 Request permission

## Abstract:

A band Lanczos algorithm for the iterative computation of eigenvalues and eigenvectors of a large sparse symmetric matrix is described and tested on numerical examples. It starts with a*p*dimensional subspace, and computes an orthonormal basis for the Krylov spaces of

*A*, generated from this starting subspace, in which

*A*is represented by a $2p + 1$ band matrix, whose eigenvalues can be computed. Special emphasis is given to devising an implementation that gives a satisfactory numerical orthogonality, with a simple program and few arithmetic operations.

## References

- D. Boley and G. H. Golub,
*Inverse eigenvalue problems for band matrices*, Numerical analysis (Proc. 7th Biennial Conf., Univ. Dundee, Dundee, 1977) Lecture Notes in Math., Vol. 630, Springer, Berlin, 1978, pp. 23–31. MR**0474741** - Jane Cullum,
*The simultaneous computation of a few of the algebraically largest and smallest eigenvalues of a large, sparse, symmetric matrix*, BIT**18**(1978), no. 3, 265–275. MR**508328**, DOI 10.1007/BF01930896
J. CULLUM & W. E. DONATH, - J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart,
*Reorthogonalization and stable algorithms for updating the Gram-Schmidt $QR$ factorization*, Math. Comp.**30**(1976), no. 136, 772–795. MR**431641**, DOI 10.1090/S0025-5718-1976-0431641-8 - G. H. Golub and R. Underwood,
*The block Lanczos method for computing eigenvalues*, Mathematical software, III (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1977) Publ. Math. Res. Center, No. 39, Academic Press, New York, 1977, pp. 361–377. MR**0474742**
W. KAHAN & B. PARLETT, - Cornelius Lanczos,
*An iteration method for the solution of the eigenvalue problem of linear differential and integral operators*, J. Research Nat. Bur. Standards**45**(1950), 255–282. MR**0042791**
J. G. LEWIS, - C. C. Paige,
*Practical use of the symmetric Lanczos process with re-orthogonalization*, Nordisk Tidskr. Informationsbehandling (BIT)**10**(1970), 183–195. MR**264839**, DOI 10.1007/bf01936866
C. C. PAIGE, - C. C. Paige,
*Computational variants of the Lanczos method for the eigenproblem*, J. Inst. Math. Appl.**10**(1972), 373–381. MR**334480**
B. PARLETT & D. S. SCOTT, - A. Ruhe,
*Iterative eigenvalue algorithms for large symmetric matrices*, Numerische Behandlung von Eigenwertaufgaben (Tagung, Oberwolfach, 1972), Internat. Schr. Numer. Math., Band 24, Birkhäuser, Basel, 1974, pp. 97–115. MR**0416000** - Axel Ruhe,
*Computation of eigenvalues and eigenvectors*, Sparse matrix techniques (Adv. Course, Technical Univ. Denmark, Copenhagen, 1976) Lecture Notes in Math., Vol. 572, Springer, Berlin, 1977, pp. 130–184. MR**0440891** - Axel Ruhe and Torbjörn Wiberg,
*The method of conjugate gradients used in inverse iteration*, Nordisk Tidskr. Informationsbehandling (BIT)**12**(1972), 543–554. MR**327013**, DOI 10.1007/bf01932964
R. UNDERWOOD, *Handbook for automatic computation. Vol. II*, Die Grundlehren der mathematischen Wissenschaften, Band 186, Springer-Verlag, New York-Heidelberg, 1971. Linear algebra; Compiled by J. H. Wilkinson and C. Reinsch. MR**0461856**

*A Block Generalization of the Symmetric s-Step Lanczos Algorithm*, Rep. RC4845, IBM Research, Yorktown Heights, N. Y., 1974.

*An Analysis of Lanczos Algorithms for Symmetric Matrices*, Tech. Rep. ERL-M467, Univ. California, Berkeley, 1974.

*Algorithms for Sparse Matrix Eigenvalue Problems*, Rep. STAN-CS-77-595, Stanford, 1977.

*The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices*, Ph. D. Thesis, London University, 1971.

*The Lanczos Algorithm with Implicit Deflation*, Rep. ERL M77/70, Univ. California, Berkeley, 1977.

*An Iterative Block Lanczos Method for the Solution of Large Sparse Symmetric Eigenproblems*, Rep. STAN-CS-75-496, Stanford University, 1975.

## Additional Information

- © Copyright 1979 American Mathematical Society
- Journal: Math. Comp.
**33**(1979), 680-687 - MSC: Primary 65F15
- DOI: https://doi.org/10.1090/S0025-5718-1979-0521282-9
- MathSciNet review: 521282