The nonabelian simple groups $G$, $G<10^{6}$—minimal generating pairs
HTML articles powered by AMS MathViewer
- by John McKay and Kiang Chuen Young PDF
- Math. Comp. 33 (1979), 812-814 Request permission
Abstract:
Minimal (k, m, n) generating pairs and their associated presentations are defined for all nonabelian simple groups G, $|G| < {10^6}$, excepting the family ${\text {PSL}}(2,q)$. A complete set of minimal (2, m, n) generating permutations of minimal degree is tabulated for these G. The set is complete in the sense that any minimal generating pair for G will satisfy the same presentation as exactly one of the listed pairs.References
-
J. J. CANNON, J. MCKAY & K. C. YOUNG, "The non-abelian simple groups G, $|G| < {10^5}$. Presentations." (To appear.)
- J. Fischer and J. McKay, The nonabelian simple groups $G,$ $\mid G\mid <10^{6}$—maximal subgroups, Math. Comp. 32 (1978), no. 144, 1293–1302. MR 498831, DOI 10.1090/S0025-5718-1978-0498831-1
- John McKay, Computing with finite simple groups, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Lecture Notes in Math., Vol. 372, Springer, Berlin, 1974, pp. 448–452. MR 0364431
- John McKay, Subgroups and permutation characters, Computers in algebra and number theory (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1970) SIAM-AMS Proc., Vol. IV, Amer. Math. Soc., Providence, R.I., 1971, pp. 177–181. MR 0372011 J. MCKAY, "The non-abelian simple groups G, $|G| < {10^6}$. Character tables." (To appear.)
- Robert Steinberg, Generators for simple groups, Canadian J. Math. 14 (1962), 277–283. MR 143801, DOI 10.4153/CJM-1962-018-0 K. C. YOUNG, Computing with Finite Groups, Ph. D. thesis, McGill University, Montreal, Canada, 1975.
Additional Information
- © Copyright 1979 American Mathematical Society
- Journal: Math. Comp. 33 (1979), 812-814
- MSC: Primary 20D05; Secondary 20F05
- DOI: https://doi.org/10.1090/S0025-5718-1979-0521296-9
- MathSciNet review: 521296