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Greatest of the Least Primes in

Arithmetic Progressions Having a Given Modulus

By Samuel S. Wagstaff, Jr.

Abstract. We give a heuristic argument, supported by numerical evidence, which sug-

gests that the maximum, taken over the reduced residue classes modulo k, of the least

prime in the class, is usually about </>(fc) log klog0(fc), where 0 is Euler's phi-function.

1.  Introduction. When (k, Ï) = 1, let Pik, I) denote the least prime in the arith-

metic progression I + kn,  n > 0.  Let Pik) = max¡P(k, /), where the maximum is

taken over all / for which 0 < / < k and (k, /) = 1.

In 1944, Linnik [5] proved that Pik, I) <kA for some large absolute constant

A.   Since then, several authors have found successively smaller, but still large, explicit

values for A.   Titchmarsh showed (Theorem 6 of [11]) that the Extended Riemann

Hypothesis (ERH) for ¿-functions of characters modulo k implies that P(k, /) «

(4>(k))2 (log A;)4.  Kanold [3] conjectured that Pik, l)<k2 always.  Heath-Brown [2]

remarked that presumably Pik, l) « A"(log k)2.  Turan [12], also assuming the ERH,

proved that for each S > 0, we have

(1) Pik, I)<Hk)iog2+sk

for almost all residue classes /, i.e., the inequality fails for at most o(<j>(k)) of the /'s

as rt —► °°.  His result, in contrast to the preceding statements, says nothing about

Pik). We mention it here because we will argue below that (1) holds for all I.

In the other direction, Landau (see Section 62 of [4]) proved the elementary

result Pik) > k + 1 for every k > 30.  From the Prime Number Theorem it is clear

that for every positive e, we have Pik) > (1 - e)<t>(k) log k for all k > K(e).  Erdös

[1] proved that there is an e > 0 so that Pik) > (1 + e)<p(k) logre for infinitely many

k's.  Prachar [8] and Schinzel [10] have shown that there is a c > 0 so that for every

/ there are infinitely many k for which P(k, l)> ck log k log2k log4fi/(log3fc)2, where

logrk is the r-fold iterated logarithm.  Pomerance [7] has shown that

P{k) > (e7 - o(l))Hk) log k log2k log4k/(log3k)2

except for a set of k's of asymptotic density zero.

In summary, it is known that P(k) almost always exceeds 0(A:)iog k and is always

less than kA for some large A, but even the ERH does not seem to yield P(k) = o(k2).

We will present a heuristic argument that P(k) is usually close to 4>(k) log k log 4>(k)

for large k.   Since log 4>(k) ~ log k as k —► °°, our reasoning says also that P(k) is
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(2) (l -

approximately </>(k) log2k for most large k.   We retain the log <¡>(k) in the expression

because it arises naturally in the argument and because the formula with it fits the

numerical data slightly more closely.

2.  The Heuristic Estimate of P(k).  Let X = mk log k, where m = m(k) will be

chosen later.  The number of positive integers below X and relatively prime to k is

about X<j>(k)/k, and about X/log X of these are prime.  Thus, the conditional proba-

bility that a number below X is prime, given that it is relatively prime to k, is approx-

imately k/i4>ik) log X).  If 0 < / < k and ik, I) = 1, then the probability that all

[X/k] of the numbers

l,l + k,l + 2k,_I + [m\ogk-l]k

(omitting / if / = 1) are composite is about

(k \mlogk

4>(k)\ogXj

If we now require that m « log3k, say, so that log X ~ log k as k —*■ °°, then the

latter probability is approximately

Jç \ m log k

<p(k)logk/

A. For any /, note that X will be a rough approximation to P(k, I) if we choose

m just large enough so that the probability (2) is neither very close to 0 nor to 1, say,

e-mfc/0(fc) sg e-c^ ^grg c js some positive constant of moderate size.  We find m «

c<j)(k)/k, so that P(k, /)«!* c0(fc)log k.   This estimate is consistent with the results

of Erdös [1] and may be obtained more directly by noting that there are about c

primes below c4>(k)log k in each of the classes relatively prime to k.

B. To estimate P(k) by X, we want m to be so large that each residue class

prime to k will have a good chance of containing a prime below X.   From (2), the

probability that every class does contain one (assuming independence of the classes) is

about
(j _ e-mfc/0(fc)-)0(fc)

As in A, we ask that this probability be « e~c.  Then

e-mk/0ik) ^ ,  _e-c/4>ik) ^c/0(fc),

or

P(k) *>X~ <t>(k) log fc(log 4>(k) - log c) ~ <p(k) log A: log <¡>(k)

as k —► °°.  This time c becomes less and less significant as k increases.  This is the

desired estimate of P(k).

To obtain greater assurance that every class contains at least one prime, we

could let c —* 0 as k —+ °°.  With c = 1/log k, for example, we see that P(k) <

(1 + e)<p(k) log k log <j>(k) for almost all large k.   A similar argument with c = log k

shows that P(k) > (1 - e)0(£)log k log <¡>(k) for almost all large k.   This reasoning

suggests, indeed, that if we disregard a small set (i.e., of asymptotic density zero) of

exceptions, then P(k) ~ <j>(k)log k log (p(k) as k —► °°.
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Table 1

Typical values of P(k)

11

12
13
14
15

1000
1001
1002
1003
1004

10000
10001
10002
10003
10004

49996
49997
49998
49999
50000

97651
97652
97653
97654
97655

510521
510522
510523
510524
510525

9.99996
999997
999998
999999

1000000

>(k)

10

4
12

6

400
7 20
332
928
500

4000
9792
3332
8568
4800

24080
46784
15360
49998
20000

97650
48824
63504
48360
78120

464100
170172
466464
218784
272160

330672
997920
480060
466560
400000

10

1

12
1

1

921
74

391
822
371

7461
3382
9937
5919
4565

37163
32740

1813
13525
15219

92811
62001
24581
76247
56096

388050
384341

504724
123199
420388

764329
532429
382501
550894
434781

POO

43
13

103
29
31

13921

33107
13417
43951
18443

477461
873469
209977
806159
374713

2236987
5582407
1301761
6213401
2615219

12787441
6897641
9985187
5935487
9723941

80539847
29994617
83719973
33307259
37688713

54764113
222531763

89382323
71550823
72484781

P(k)/est

0.78
0.94
1.35
1.02
0.69

0.84
1.01

1.01
1.00
0.86

1.56
1.05

0.84
1.13
1.00

0.85
1.03
0.81
1.06
1.22

0.99
1.14
1.24
0.99
0.96

1.01
1.11

1.05

0.94
0.84

0.94
1.17
1.03
0.85
1.02

[P(k)/k]

3
1
7

2
2

13
33
13
43
18

47
87
20
80
37

44
111

26
124

52

130
70

102
60
99

157
58

163
65
73

54
222
89
71
72

3.  The Numerical Evidence.  Perhaps the foregoing heuristic argument can be

improved.  In any case, we can report that the empirical results given below do show

that P(k)/<j)(k)\og k log </>(k) is usually near 1.  We give special attention to the excep-

tional k below, listing all those where this ratio is not so close to 1. We computed

P(k) for many values of k.   Let S be the set of integers k in the intervals 11 < k <

50000,  95001 < k < 100000,  510501 < k < 510550, and 999951 < k < 1000000,

together with k = 115147, 357819, and 636184.  For each k in S, we computed P(k)

and recorded the / for which P(k, I) is greatest.  We could not extend the calculation

beyond 1000000 because of space and time limitations.  The block of 50 numbers

beginning with 510501 was included because 510510 = 2 • 3 • 5 • 7 • 11 • 13 • 17 is the
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1076 SAMUEL S. WAGSTAFF, JR.

Table 2

Examples with small ratio P(k)/est

k   $(k)       l P(k)    P(k)/est       [P(k)/k]

102 32 95 197 0.384 1
150 40 143 293 0.396 1
210 48 209 419 0.422 1
130 48 129 389 0.430 2

51 32 44 197 0.452 3

420 96 361 1201 0.454 2
22S 72 77 761 0.455 3
246 80 145 883 0.458 3
312 96 217 1153 0.458 3

75 40 68 293 0.460 3

110 40 1 331 0.477 3
105 48 104 419 0.485 3
462 120 323 1709 0.485 3
528 160 361 2473 0.486 4
570 144 511 2221 0.489 3

Table 3

Examples with large ratio P(k)/est

k    <¡)(k)     I P(k)  P(k)/est   [P(k)/k]  Factorization

1623 1080  1478 123203 2.209 75 3-541
6361S4 315840 629991 116415479 2.178 182 8-281-283

461 460    22 37363 2.160 81 461
23636 11160  9451 2183963 2.085 92 4-19-311
3246 1080  3101 123203 2.020 37 2-3-541

1945 1552 722 169937 1.968 87 5-389
10948 4224 7989 642973 1.960 58 4-7-17-23

922 460 4S3 37363 1.941 40 2-461
40951 39600 38984 8352037 1.876 203 31-1321
19815 10560 3058 1806223 1.866 91 3-5-1321

32S44 8448 27521 1472657 1.854 44 4'3'7"17-23
22505 15408 7419 2753029 1.849 122 5-7-643

541 540 18 39511 1.848 73 541
2732 1364 1587 143651 1.844 52 4-683
7049 5616 4420 786859 1.832 111 7-19-53

number below 1000000 for which <p(k)/k is least.  We computed P(k) for the three

special values of k because we thought there was a reason (see below) why P(k) might

be unusually large for these k.  The nine cases 2 < k < 10 are left as an exercise for

the reader.

Table 1 illustrates typical results from the huge table in our possession.  The

particular intervals of length 5 given here were chosen to be representative of the near-

by numbers.  In each table, "est" stands for the estimate <¡>(k)\og k log <p(k).  It appears

that, in fact, the larger k is, the more likely P(k)/est is to be close to 1.   The column

headed / gives the (necessarily unique) / for which P(k, I) = P(k).  The last column

[P(k)/k] gives the number of composites before the first prime in the arithmetic pro-

gression / + kn.
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1078 SAMUEL S. WAGSTAFF, JR.

In Tables 2 and 3 we list the 15 moduli k G S fox which P(k)/est is smallest and

greatest.  Note that the k's in Table 2 are all small, while several quite large numbers k

appear in Table 3.   This happens because a single bad arithmetic progression can inflate

P(k), but a very great deal of good luck is required for every one of the (¡>(k) progres-

sions to contain a small prime.  Note also that 102 = 2-51, 150 = 2-75, 210 =

2-105, 3246 = 2 • 1623, and 922 = 2-461, and that in each case the same progression

causes that large P(k) for both the odd number and its double.  Moreover, 1623 =

3-541, but different progressions inflate P(k) for 1623 and 541.

The heuristic argument predicts that the distribution of P(k)/<p(k)\og k log (¡>(k)

should have mean 1 and should peak more and more sharply about 1 as k increases.

Table 4, which gives the distribution of this ratio for seven intervals of 5000 values of

k each, supports this prediction well.  (The statistics for four other intervals, two

longer and two shorter than 5000, are also given at the end of Table 4.)  The two cen-

ter intervals of length 0.1 contain more and more of the ratios as the size of k increases.

The size of the tails continually decreases.  We have already explained why the upper

tail is larger than the lower tail.  The mean values of the ratio seem to converge slowly

to 1.

Low [6] and Purdy [9] found three values of k for which a certain Dirichlet

¿-function L_k(s) with modulus k comes very close to 0 at s = xh.  Although there is

no known connection between P(k) and L_k(1/7), we once thought that a small value

of the latter would cause a large value of the former.  It was at that time that we com-

puted P(k) for k = 115147, 357819, and 636184.  The first two k produced ordinary

ratios P(k)/<p(k)log k log 4>(k) of 1.20 and 1.03, but the third modulus did have the

unusually high ratio shown in Table 3.  The modulus 636184 deserves more study to

determine if there really is a connection.

We became interested in studying P(k, I) during the calculations of [13], where

we had to compute P(p, 1) for many primes p.   We observed there that P(p, 1) is

about p logp on the average, which agrees with A of Section 2.   The values of P(p)

for p S S seem to be statistically indistinguishable from those for P(k) for all k G 5.

There is nothing special about a prime modulus (except, of course, that <¡>(p) = p - 1).

For very small k, the value 1 often appears as the / for which P(k) = P(k, I).   For

k > 500, however, the residue class 1   (mod k) is almost never the one with the

greatest least prime.   In fact, the numbers l/k, where P(k, l) = P(k), seem to have a

uniform distribution in the unit interval (0, 1).

After he conjectured that P(k)/<¡>(k) log k tends to infinity as k —► °°, Pomerance

[7] remarked that, in proving a lower bound for P(k), the hardest values of k to treat

seem to be the products of the first r primes for various r.   We see from Table 5 that

P(k)I<t>(k)log k log 0(fc) really is a bit low for these numbers.   Since the k's in Table 2

have only small prime divisors, it would be tempting to conjecture that the ratio will

always be small for such numbers.  However, the ratio is 1.352 for k = 675 = 33 • 52

and 1.960 for k = 10948 = 22 -7-17 • 23.   The numbers whose prime divisors are as

small as possible are the powers of 2.   Some of these are listed in Table 5.   The ratios

for these k are a little low, but definitely not unusually so.
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Table 5

Pik) fork = 2-3-5.pr and k = 2"

30
210

2310
30030

510510

16
32

64
128

256
512

1024
204S

4096
8192

163S4
32768

<j>(k)     I

8     1
48   209

480   697
5760 14111

92160 126449

P(k)  P(k)/est

8
16

32
64

1

57
85

128 125
256 1
512 441

1024 1939

2048 4017
4096 2159
8192 16071

16384 28569

31
419

14557
464561

10336649

41

97
313
853

3709
7681

20921
38803

106417
321647
638663

1634201

0.548
0.422
0.634
0.903
0.747

0.889
0.631
0.679
0.660

1.077
0.867
0.945
0.717

0.819
1.048
0.892
0.989

[P(k)/k]

1
1
6

13
20

2

3

4
6

14
15

20
18

25

39
38
49

The maximum of P(k)/k with k e S occurred at k = 510533.  The ratio was 247.98,

/ = 499932, and P(k) = 126601583.  Among the first 50000 numbers k, the greatest

P(k)/k was 204.98 at k = 47903, with P(k) = 9819037 and I = 46825.

The author warmly thanks Professor Douglas Hensley for a valuable discussion of

the heuristic argument.  He is grateful to the Computing Services Office of the Univer-

sity of Illinois for letting him use so much computer time.
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