On bounding $A^{-1}_{\infty }$ for banded $A$
HTML articles powered by AMS MathViewer
- by Stephen Demko PDF
- Math. Comp. 33 (1979), 1283-1288 Request permission
Abstract:
Upper bounds for $\left \|{A^{ - 1}}\right \|_\infty$ in terms of inverses of certain submatrices are obtained for band matrices. An application to a problem in spline theory is made.References
- Carl de Boor, Bounding the error in spline interpolation, SIAM Rev. 16 (1974), 531โ544. MR 361531, DOI 10.1137/1016085
- Carl de Boor, On the convergence of odd-degree spline interpolation, J. Approximation Theory 1 (1968), 452โ463. MR 237996, DOI 10.1016/0021-9045(68)90033-6
- Carl de Boor, On bounding spline interpolation, J. Approximation Theory 14 (1975), no.ย 3, 191โ203. MR 382911, DOI 10.1016/0021-9045(75)90055-6 C. DE BOOR, Odd-Degree Spline Interpolation at a Bi-Infinite Knot Sequence, MRC TSR #1666, August, 1976.
- Carl de Boor, A bound on the $L_{\infty }$-norm of $L_{2}$-approximation by splines in terms of a global mesh ratio, Math. Comp. 30 (1976), no.ย 136, 765โ771. MR 425432, DOI 10.1090/S0025-5718-1976-0425432-1
- Stephen Demko, Local approximation properties of spline projections, J. Approximation Theory 19 (1977), no.ย 2, 176โ185. MR 435663, DOI 10.1016/0021-9045(77)90039-9
- Stephen Demko, Inverses of band matrices and local convergence of spline projections, SIAM J. Numer. Anal. 14 (1977), no.ย 4, 616โ619. MR 455281, DOI 10.1137/0714041
- Jim Douglas Jr., Todd Dupont, and Lars Wahlbin, Optimal $L_{\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems, Math. Comp. 29 (1975), 475โ483. MR 371077, DOI 10.1090/S0025-5718-1975-0371077-0
- Richard S. Varga, On diagonal dominance arguments for bounding $\parallel A^{-1}\parallel _{\infty }$, Linear Algebra Appl. 14 (1976), no.ย 3, 211โ217. MR 447297, DOI 10.1016/0024-3795(76)90067-7
Additional Information
- © Copyright 1979 American Mathematical Society
- Journal: Math. Comp. 33 (1979), 1283-1288
- MSC: Primary 65F35; Secondary 41A15
- DOI: https://doi.org/10.1090/S0025-5718-1979-0537972-8
- MathSciNet review: 537972