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A Combinatorial Interpretation for the

Schett Recurrence on the Jacobian Elliptic Functions

By Dominique Dumont

Abstract. The coefficients introduced by Alois Schett containing the Taylor series

expansions of the Jacobian elliptic functions are proved to count certain classes of

permutations.

1.  Introduction.  Let D be the derivative operator on the polynomials in three

variables defined by

Dx = yz,   Dy = zx,   Dz = xy.

The polynomials Sm(x, y, z) (m > 0) introduced by Schett [3] in a slightly

different form (called Schett polynomials in this paper) can be defined by induction

as follows:

S0ix, y, z) = x,

Smix, y,z) = DSm_xix, y,z)      (m > 1).

The first values of Sm arem

Sxix,y, z)=yz,

S2(x, y, z) = yDz + zDy = xy2 + xz2,

S3(x, y, z) = y3z + yz3 + 4x2yz,

S*(x, y, z) = xy4 + 14xy2z2 + xz4 + 4x3y2 + 4x3z2.

Each Sm has total degree (m + 1) and its coefficients are positive integers. When

m is even (respectively, odd), Sm is odd (respectively, even) in x and even (respectively,

odd) in y and z.  Accordingly, for

( for m = 2n,   S2n(x, y, z) =  £   a2nJ)x2i+xy2¡z2n-2i-2i,

\ i>j>0

[form = 2n + l,   S2n + Xix, y, z) =  £  a2n + x f  x2iy2/+iz2n-2i-2i+i^
i,j>0

With« denoting the integral part of m in = [m/2]) relation (1) yields
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(2)

for m > 1, i + / < 0 or i + / > n,    am ¡. = 0,   ax 0>0 = 1,

«2»,/,/ * (2/ + l)a2n-l,tJ + i2i + 2)a2n-l,i+lj-l

+ i2n-2i-2j + l)a2n_XJ¡i_x,

a2n + i,i,j = (2* + 1)«2„(U + (2/ + 2)«2„(/_li/+1  +(2« - 2Z-2/+ 2)a2n4_u.

Now using (2) it is straightforward to obtain the first values of the Schett poly-

nomial coefficients.  (For S7 and S8, see [5].)

0 1

1 0

1 0

2,/,/

0 1

1 4

1 0

Table 1

0 12/

'3,/,/

1 4 0

H4 4 0

1 0 0

'4,i,/

0 1 2 p

1  44 16

14 44 0

1 0 0

0 1

1 44 16 0

135 328 16 0

135 44 0 0

1 0 0 0

's,i,j '6,/,/

On the other hand, the Taylor series expansions of the Jacobian elliptic func-

tions sn, en and dn, read
3 5

sn(w, Jfc) = u - (1 + k2) |p + (1 + 14k2 + k4)~

i/7
-(1 + 135Â:2 + 135/fc4 +k6)~-+ ■ • • ,

cn(«, k) = 1 - %r 4- (1 + 4k2ijr - (1 + 44k2 + 16fc4)^- + • • • ,
2! 4! '6!

dn(w, k) = 1 - k2 ^- + (4 + k2) 77- - (16 + 44A:2 4- Ac4) jr + ■ • ■ .
z! 4! o!

The main result by Schett was to prove that the coefficients of these expan-

sions are precisely equal to the coefficients a    . 0 and am 0 ■ that occur in the first

rows and columns of the previous tables.   Schett also noticed that

¿2    am,i,j = ml
i,j>0

holds for every m > 1.  This strongly suggests that the set of integers (am ¡ ¡),¡ -^ 0n

be the distribution of a bivariate statistic (X, Y) defined on the permutation group

Sm.  The purpose of this paper is precisely to construct such a statistic.

Let o he an element of Qm, and denote by o~x its inverse in Sm. Then a cycle

peak of o is defined to be an integer k with the following properties:

2 < k < m,    oik) ¥= k,      oik) < k   and    o~ xik) < k.

',, with o = i]

only cycle peaks 4 and 6

For example, with a = (' 2 \ 4 ^) the cycles are (1 3 4), (2), and (5 6) and the
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Let Xio) (respectively, Yio)) be the number of odd (respectively, even) cycle

peaks of o.  Then our main theorem reads:

Theorem.   Each coefficient am ¡, is equal to the number of permutations in

Qm having i odd cycle peaks and j even cycle peaks, i.e.,

i3) am,i,i = K* € Sm:  X(a) = i, Y(o) = /}|.

Example.   For m = 3 the permutation (1) (2) (3) has no cycle peak; (1 2) (3)

has only one even cycle peak; each of the four remaining ones (1 3 ) (2), (1) (2 3_),

(1 2 3_), (1 3_ 2) has only one odd cycle peak.  (See Table 1 for m = 3.)

The above theorem has several consequences. With i = 0 (respectively,/ = 0)

relation (3) provides new combinatorial interpretations for the coefficients sn(u, k)

(respectively, cn(u, k) and dn(u, k)) (see Corollary 1).  On the other hand, as the

Jacobi elliptic functions are simply related to the Euler numbers Em (m > 1), our

approach will also lead to a new combinatorial interpretation for the coefficients Em

(see Corollaries 2 and 4).

2.   Proof of the Theorem.   If o is in S m, consider the permutation r obtained

from o by removing m from its cycle.  In other words, if o(m) = m, then t is the re-

striction of a to {1, 2, . . . , m - 1}; if o(m) < m, let r(o~x(m)) = o(m) and for

i =f= o~x(m), t(i) = o(i).

Conversely, if r is in Qm_x, then t will be extended to a permutation a in Qm

in m different ways.  Choose an integer k (1 < k < m).  If k = m, let o(m) = m.  If

not, let oik) = m and o(m) = r(k). We say that m has been inserted into the cycle

of k on the right of k ion the left of k would be:   o(T~x(k)) = m and o(m) = k).

For the other elements let o(i) = t(í).

The only problem is to see how the numbers of odd and even cycle peaks are

changed when we go from r to o.  Assume m = 2n.

(a) First examine the case when the insertion of 2n leaves the numbers of odd

and even cycle peaks invariant.   Start with t having / odd and /' even cycle peaks.  For

/' not to be changed, the element 2« has to be inserted on the right or on the left of

an even peak of t, or it must become a fixed point of o, i.e., o(2n) = 2«.  There are

exactly (2/ + 1) possibilities to do so.

(b) If we want to remove one odd cycle peak, we must put 2« on either side of

some odd peak of r.  If t has (i + 1) odd and /' - 1 even peaks, there exist (2/ + 2) possi-

bilities to do so and o will have i odd and / even peaks.

(c) The remaining case is to start with t having / odd and / — 1 even cycle peaks

and create a new even peak.  We have to exclude the (2(/ - 1) + 1) insertions of type

(a), and the 2i ones of type (b).  There so remain (2n - 2/ - 2/ + 1) possibilities to

add an even cycle peak.

This shows that the number of permutations in 6m with i odd and /' even cycle

peaks satisfies recurrence relation (2) in the even case.  The proof is quite analogous

in the odd case and will be omitted.
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3.  Applications.  We can now interpret Schett's result on the coefficients am ¡ 0

andam,o,,-

Corollary 1.  (i)  The coefficient ofi-l)"k2>u2n + xH2n + 1)! in the Taylor

expansion o/sn(u, k) is equal to the number of permutations in Q2n ior in Q2n + X)

having j cycle peaks, all even.

(ii)  The coefficient of i~ l)"k2iu2"H2n)\ irespectively, (- l)nk2"-2iu2nH2n)\)

in the Taylor expansion o/cn(w, k) irespectively, dn(«, k)) is equal to the number of

permutations in G2„_, ior in G2„) having i cycle peaks all odd.  It is also equal to the

number of permutations in 6 2n having n cycle peaks, i among them being odd.

Recall that the Euler numbers iE  ), m>0, are defined by

sec x + tan x =  £   Em „
x_

m\
m>0

It is well known that cn(w, 1) = sec(i u) and sn(«, 1) = - / tan(i «).  Therefore,

Corollary 2.   The Euler number Em im > 1) is equal to the number of

permutations inQm_x ior in Qm) having no cycle peaks of the parity of m.

Corollary 3 (Schett).  The number of permutations in Qm having k run-ups

(0 < k < m) is equal to the sum 2/+._fc dmi¡tf

A direct combinatorial proof can be made by noting thatE/+._fc ami ■ counts

the permutations in Qm having k cycle peaks and using the fundamental transforma-

tionofSm([2,p. 13]).

The following interpretation is a refinement of Andre's result on secant numbers

[1].   Recall that a permutation a in 62„ is alternating if a(l) < o(2) > a(3) < a(4)

> • ■   > o(2n - 1) < a(2n).

Corollary 4.   The coefficient of(-l)"k2'u2"/(2n)\ in the Taylor expansion

of cn(u, k) is equal to the number of alternating permutations in Q2n with the

property that a (2/) is odd for exactly i abscissas 2/'.

This can be seen from the fact that if i + j = n, the run-ups are simply rises and

so the permutation alternating.

Remarks, (i) The sum 2, am ¡ ¡ was studied by Schett. He showed that it is

equal to the number of permutations in S m having m - i peaks (not cycle peaks !).

No direct bijection with the permutations having i odd cycle peaks is known.

(ii)  The first combinatorial interpretation for the Jacobian elliptic function

coefficients was given by Viennot [6] with an entirely different set-up.

The author thanks Professor Schiitzenberger for having drawn his attention to

Schett's papers.

Note Added in Proof.  The result stated in Corollary 4 has been obtained indepen-

dently by P. Flajolet ("Combinatorial aspects of continued fractions," IRIA, 78150-

Rocquencourt, France).
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