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On a Relationship Between the Convergents of the

Nearest Integer and Regular Continued Fractions

By William W. Adams

Abstract.   In this paper we derive a relation concerning the speed of convergence of

the nearest integer and regular continued fractions.   If An/B    Pk/<tk denote the con-

vergents of the nearest integer and regular continued fractions of an irrational number

a, then for all n there is a k(n) such that AnjBn = Pk(n)/lk(ny   It ¡s shown that

*(■—)
n \      2       /

lim  -=-
„_►«> k(n) log 2

for almost all a.   This problem is reduced to a special case of a general result concern-

ing the frequency of partial quotients in the regular continued fraction (Theorem 2).

1.   Introduction.   Williams and Buhr [7] compared the lengths of the algorithms

for computing the fundamental unit of real quadratic fields using the regular continued

fraction* (RCF) and the nearest integer continued fraction (NICF) (see Section 4 for

the definition of the NICF).  It is known (see [5], say, for RCF and [6], [7], [8] for

NICF) that, for square-free positive integers D, if a + b\/D is a fundamental unit of

Q(\jD) (a, b positive integers or halves of positive integers if D = 1 (mod 4)), then

a/b is a convergent of both the RCF and NICF.  Let us suppose that the fundamental

unit is given by the p(D)th convergent of the RCF and the Tt(D)th convergent of the

NICF.   It is observed in [7] that the ratio n(D)/p(D) is near log 2 = .693147181 . . . .

Indeed, in an example of D. Shanks [4] of a prime D = 26437680473689 with an un-

usually long period for its RCF, it is observed that -n(D)/p(D) = .6942215829 ....

Moreover, it is noted that

Z        <d)
d<D

d squarefree
-■— = .7017174 . . . ,

Z    m
d<D

d squarefree

foxD = 100000.

The purpose of this paper is to derive what the asymptotic value of these ratios

should be on the assumption that, within the period of\/D, the RCF behaves like
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1322 WILLIAM W. ADAMS

almost all numbers with respect to the frequency of certain partial quotients.  It will

be shown that, with this assumption, the above ratios will be, as D —► °°,

.6942419
log 2

This agrees with Shanks' example to four places.  As Shanks pointed out, this excep-

tional accuracy was really to be expected since the frequencies of the small partial

quotients of the RCF, as reported in [4], agree with the Gauss-Kuzmin law to that

same accuracy.

Now let a be any irrational number.  Denote by Pk/qk, the convergents of the

RCF (pk = pk(a)), and by AjBn, the convergents of the NICF.  So pk, qk are rela-

tively prime positive integers with q0 <qx <q2 <   ■ ■ , and An, Bn are relatively

prime integers such that Iä0 I < \BX I < I B2 I < ■ • • .  As we shall see below, each

An/Bn is one of the pk/qk.  So there is a strictly increasing function k(n) such that

for all n > 0

AJBn = Pkwfakin)-

We will show the following theorem.

Theorem 1.   For almost all real numbers a

'1 +V5'
log

n
lim
„_>,*, k(n) log 2

This result will be deduced from the following general metrical theorem concern-

ing the RCF.   For irrational a with 0 < a < 1 let

a= [0;ax(a),a2(a), . . .]

denote its RCF.   Set a, = [afia); a,+ x(a), . . .].

Theorem 2. Let a, ß be irrational numbers with 0 < a, ß < 1.

(a) Define, for all integers v > 0, i//„(«, a, ß) to be the number of integers j

satisfying 0 < / < n - 1

(1)  a,+ x(a) = ax(ß),   a,+ 2(á) = a2(ß), . . . , a,+ v(a) = av(ß),    oI>+/+, > av+1(ß).

Then, for almost all a,

1   °° log(l + ß)
lim - £ (-1)1», a,ß) = -——-■

„^oo n v=0 log 2

(b) Define, for all integers v>0, yv(n, a, ß) to be the number of integers j

satisfying 0 < ; < n - v and (1).   Then for almost all a

1   - log(l + ß)
lim - £ (-1)V>, o,ß)= .

„->,» n v=o l°g 2
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We note that if

JE- i
ß=—f- = [0;i,i,...],

then the last condition in (1) is automatic.  Thus \pv and yv, in this case, are simply

counting the number of sequences of v 1 's in a row.

The relevance of the frequency of occurrence of the partial quotients is seen in

Theorem 3. For a given integer n > -1, suppose

K_J_k_

Bn       Qk

Then

An + 1        Pfc+l Pk + 2
or

Bn+X      1k+2 qk+2

where the latter occurs if and only ifak+2 = 1 (ak+2 = ak+2(a)). Moreover,

B-i     <l-x '

Actually, the relevant frequencies for Theorem 1 are the frequencies of the se-

quences 1;1,1;1,1,1;... .  This accounts for the appearance of the number

(1 + V5)/2 in Theorem 1.

Now suppose that a = \JD, and suppose that An/Bn gives the fundamental unit

of Q(y/D).  Then, of course, Pk(n\/qkin\ also gives the fundamental unit, and so 7r(I>)

= n and p(D) = k(n).  Thus, on the assumption that as D gets large, the first p(D)

partial quotients behave like almost all numbers with respect to the sequences of dig-

its 1; 1, 1; 1, 1, 1; etc., I conjecture that

1 +%/5
log

■"(D) \     2
lim

/,_♦.        p(D) log 2
D squarefree

I am indebted to H. C. Williams for allowing me the use of his manuscripts [7],

[8] in advance of publication.  The present manuscript was prepared before [8] was

available to me, but it should be pointed out that Theorem 3 was already contained in

[81.
I would also like to take this opportunity to thank D. Shanks for his encourage-

ment during the course of the preparation of this paper.

Finally, as this paper was being typed, the author discovered that G. J. Rieger

[9] has proved a result which yields an analogous result to Theorem 1 for the average

length of RCF and NICF for rational numbers.
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2.  Proof of Theorem 2(a).  The purpose of this section is to prove Theorem

2(a).  We will follow the Ergodic Theorem proof for results of this nature (see [1, pp.

40-50]).   For any v > 0 define a function fv(ux, . . . ,uv, x), for positive integers

ux, . . . ,uv and real numbers x > 1, to be 1 provided u, = a,(ß) (1 < / < v) and x >

av+x(ß) and to be zero otherwise.  Define the transformation T of the unit interval

0 < a < 1 by

a    LaJ
T(

where \y] denotes the largest integer <y.   If T' denotes T composed with itself/

times, we have

*„(/i, a, ß) = "¿ fv(ax(T'a), - • • , av(Pa), T'av+X).
i=o

Set

OQ

fi°¡) = X i~ iffvia lia), . . . , av(a), av+l).
v=0

We note that if T'a + ß for all / > 0 (in particular if a is not equivalent to ß), then

this sum for f(T'a) is in fact finite (/ > 0). There are only a countable number of

such a and so f(T'a) is defined for almost all a in (0, 1), for all / > 0. Then, for a

not equivalent to ß,

(2) lim - ¿ (-1 )">„(«, a, ß) = Um - "¿ f(Pa)
tt->°° n v=o n-x*> n /=o

(the interchange of summations in (2) is justified since the sums are actually finite).

Now define the Gauss measure p on (0, 1) by

1      r      dxi     r      ax

m = r~; Je tt"'log 2   £   1 + x

for Lebesgue measurable sets E in (0, 1).  It is well known, [1, p. 44] that T preserves

p and is ergodic with respect to p.  Then, if we knew that /£ Lx(p), we would have

from the Ergodic Theorem [1, p. 13], and (2) that

<3) Um - ¿ (-1 y», a, ß) = T f(x)dp(x)
vt       ~ J o

r»-+oo " v=0

for almost all x in (0, 1).  This will now be verified and at the same time the integral

will be evaluated.

Set

**W = Jo fviaiix\ • ■ • ' aÂx)> xv+l)dp(x).

It is not hard to show (see [2, Chapter III]) that fv(ax(x), . . . , av(x), xv+1) is the

characteristic function of the set of x in interval with endpoints
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Hence,

(4)

Thus,

PM=Pv_      Pv+iiß) _Pv+i

Qviß)     Qv       <7„+i(ß)    Qv+i

V*(v)
1

<

log 2

1

log 2

\ 1v) \ av+l

Pv      Pv+l

av      Qv+l

Z <f(y) <
v=0

1 1

io?>2qvqv+x

(it is well known that qv >2(v   1)/2).  Hence by Fubini's theorem, fELx(p) and,

moreover, (using Fubini's theorem again and (4))

$lof(x)dp(x)= ¿ (-i)VOO
v=0

i    z. I    I     pv\   ,   L , Pv+i
T     log   1+^   -log   1 +

log 2 v=o \     \       qvJ \      qv+l

_ log(l + ß)

log 2

(since p0/q0 = 0 and pv/qv -^ ß (v —► °°) and pvqv+ x - pv+ xqv = (- 1)"+1 ).  This

completes the proof of Theorem 2(a).

Using the techniques of [3], it should be possible to derive an explicit error

term in Theorem 2(a) and, hence, using the result of the next section, an error term

in Theorem 2(b), also.

3.   Proof of Theorem 2(b).   Define

pv(n, a, ß)= \pv(n, a, ß) - <fv(n, a, ß).

It suffices to show that, except on a set of measure zero in a, we have

1  ^
Urn - £ Pvin> a, ß) = 0.

n-*°° n v=0

Now pv(n, a, ß) is the number of integers /, n - v + 1 </ < n - 1 satisfying (1).  De-

note by Ev n , the set of a satisfying (1).  We first estimate the measure \Evnj\ of

E
v.n.j-

We follow the argument given in [2, pp. 57-60].  If a £ EVinu then for some

positive integers bx, . . . , b,,

a= [0;bx,b2, . . . , b,, ax(ß), . . . , av(ß), av+,+ x]

with av + ,+ 1 > av+x(ß).  For fixed bx, . . . , b, this defines an interval E(b)
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(suppressing v, n, j) with endpoints P¡+v(a)/qj+v(ot) and p,+ v+x(a)/q,+ v+x(a) of

length l/q¡+v(a)q,+ v+x(a).  If P¡/Q¡ denotes the convergents of [0, bx, . . . , bf],

then the set F(b) of all a of the form [0, bx, . . . , b,, a,+ x] is an interval with end-

points P,/Q, and (P, + Phx)l(Q, + Q,_x) of length l/Q,(Q, + Q,_x).  Hence,

\E(b)\l\F(b)\<Q2lq,+v(á)2.

We use the well-known identity

q,+ v(a) = Qflv(ß) + Q,_xq^x(ß)

to obtain

\E(b)\/\F(b)\<l/qv(ß)2.

Now, where Uft means the union over all 1 < bx, . . . , b, < °°, we have

(J E(b) = EvnJ   and    U F(b) = (0, 1),
b b

where both unions are disjoint.  Thus, we conclude that

\EViHj\ < l/qv(ß)2

(we emphasize that this is independent of/).

Now, from the definition of pv(n, a, ß), if a ^ Ev n, where

nv,n

n-l

U        ^v.n.j'
j=n-v+l

2
then pv(n, a, ß) = 0.  Moreover, \Evn I < v/qv(ß)2.

Set l(n) = [nA].  Set

'Jn ~      U     ^v,n'
v>l(n)

Since trivially pv(n, a, ß) < v for all v, n we see that if a £ En

1   » 1 '(«)-!        l(ri)2
- z p,(«, a, ß) < - j: * < —•
n v=o n   v=o n

Thus, we see that, if for any positive integer m, a £ U„>m En, then

1   ~
Urn - £ p„(n, a, p1) = 0.

n->oo 1 v=0

But the measure of the excluded set can be determined as

O     U    En
m = l n>m

lim
m-<-°

U     En
n>m

<lim    J!

< lim   Z
/(«)

= 0,

m-+°° »=m ¿7/(n)(j3)

since it is well known that qv(ß) > 2(v_1)/2; and so we see that 2~=2 l(n)/q,ln)(ß)2

is a convergent series.
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4.  Comparison of the RCF and NICF.  We will now give a very explicit algo-

rithm for converting the RCF into the NICF.  Theorem 3 will be an easy consequence

of this procedure.

First, we will set up the notation and describe the NICF.  For comparison we

begin by briefly describing the familiar RCF (see [2] ).

Let a he an irrational number.  Let a0 = [a] denote the largest integer < a.

Let aQ = a and, inductively,**

1
ak =-.      ak = [«*] •

Then

a = a0=a0 +

ax+-

a2+-

a3 + • ■ •

which we abbreviate as

a = [a0, ax, a2, . . .].

Set p_2 = 0, q_2 = 1, p_x = 1, q_x = 0 and, inductively, for k > 0, pk = akpk_x +

Pk-2' Vk = akQk-i + Qk-2- Then tne ak are caUe£l tne partial quotients of a, and the

Pk/qk are called the RCF convergents of a.  Moreover,

Pklak = K> ai ' • • • ' flfci    and    ak = \-ak> ak+i ' ■ ■ ■ I •

Now, for an irrational number a we will give the NICF algorithm (see [6], [7],

[8]).   Let N(a) denote the integer closest to a.   Set 6Q = a, b0 = N(a) and, induc-

tively, set

K = — —a—.    bn=N(en).
'n-l      "n-1

Then

bx-

b2---

which we abbreviate as

a = (bQ, bx, b2, . . . ).

**The explicit dependence of ak = ak(a) on a will now be suppressed.
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Set A_2 = 0, B_2 = -1, A_x = l,B_x = 0 and, inductively, for n>0,

An = bnAn-l ~ An-2>        Bn = bnBn-l ~ Bn-2 •

The AjBn are called the NICF convergents of a.  Moreover,

AJBn = (V bx,..., bn),     en = (bn, bn + x,...).

We now describe how, given the RCF, we can obtain the NICF from it.

Theorem 4. For a given integer n > -1 there are 16 different possibilities for

bn, An, Bn, An_x, Bn_x and dn + x given by the following table, where k is chosen so

that An = ±pk, Bn = ±qk (same sign).

I II III IV v VI VII VIII

b„           ak -ak l+ak -(1 + ak) 1 + ak_, "(1+«»_,) 2 + ak_, -(2+«*_,)

K *P* ±Pk ±Pk ±Pk               ±Pk ±Pk ±Pk                  ±Pk

An-1 ±P*-i TP*-i ±Pk-i TP*-i               ±P*-2 *Pk-l ±Pk-2                   *Pk-2

8/i + i _a*+i          ai+i _at+i ak+t i+ak+i -(1+at+i) 1+at+i -0+a*+i)

77ie signs for An, An_x are the respective signs given there, e.g. if in case IV, An =

-pk, then An_x = pk_x.   To obtain Bn use qk instead of pk with the same sign; and

similarly for Bn__x.   To begin use case II for n = - 1 — k with the top choice of signs

(ignore b_x and a_x).

To obtain the table entry for bn + x, An + X, An and Qn + 2, there are two cases.

Case a:  ak + 2 > 2. Here An+X/Bn + X =Pk+1/qk+l (i.e.,k*-+ k + 1 in the

table).

Case b:  ak+2 = 1. Here An+X/Bn + X = Pk+2l<Ik + 2 ('-e-> kh~* k + 2 in the

table).

The scheme below describes how to go from case to case as n >—* n + 1 :

II . Ill v IV
v > > \,
o vr b v+ b vi- b v+

a.m+ a™~ III+ IV-

V  ^ VI VII VIII
N >» > >
b vu + b viir * vu+ b viir

77ie "+", "-" superscripts indicate that either the choice of signs stays the same (for

"+") or reverses (for "-").

Note finally that in cases I, II, III, IV, ak+ x > 2 and in cases V, VI, VII, VIII,

ak = l.
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Before proving Theorem 4, note that Theorem 3 is an immediate consequence.

The proof given in [8] of Theorem 3 is much more direct but I think Theorem 4 has

some independent interest.  To aid in the understanding of the statement of Theorem

4 an example is worked out.

Let a = V13/2 = [2; 1,1,4].  Fox n = k =-I, ak+x = ax = I.  So II —>

V+, n = 0, k = 1 and b0 = 1 + ak_x = 1 + a0 = 3.  Now ak+2 = a3 = 4 so V —►

III+, n = I, k = 2 and bx = 1 + ak = 1 + a2 = 2.  Again, ak+2 = a4 = 1 so III —►

VI-, n = 2, k = 4 and b2 = -(1 + a3) = -5.  Once again, ak+2 = a6 = 4 so VI —►

IV-, n = 3, k = 5 and b3 = -(1 + a5) = -2.  Finally, ak+2 = a7 = 1 so IV" —►

V+, n = 4, k = 7, so b4 = 1 + a6 = 5 and the cycle is complete.  Hence, \/l3/2 =

(3; 2, -5,-2, 5).  (Note that the period is in fact longer here, contrary to statements

made in [7], [8].  However, this in no way affects anything done in those papers.)

The proof of Theorem 4 using induction on n is simply to verify each of the

cases.  We will only do this for

,/r

b viir

the other cases being similar.  First assume that ak+2 > 2 (Case a).  Then, since 6n + x

--0 +otk+x),weseethatbn + x =N(6n + x) = -(l + ak+x);An + x =bn + xAn-

An-1  =-(1  + «fc+lXiPfc) - i+Pk-2) = +Pk+1  +iPk~Pk-l  -Pk-2) = TPk+l

since ak = \;An = ±pk; 8n+2 = U(bH + l - 6n + x) = H(-ak+x + ak+x) = ak+2;

thus, we have IV-.  Now assume ak+2 = 1 (Case b).  Then again dn+x =

-(1 + ak+x) implies bn + x = N(9n + X) = -(2 + ak+x);An + x = -(2 + ak+x)(±pk)

-(iPfc-2) = T(Pk+i + Pk) T iPk - Pk-i -Pfc-2) = +Pfc+2 since flfc=ak+2 = 1;

An = ±Pk'K + 2  = l/(-l ~ak+l   +ak+l)= !/(-1  + <*k + 2) = - ak + 2liak + 2 -1)

= -(1 + 0!fc + 3), since ak + 2 = 1; thus, we have VIII-.

5.   Proof of Theorem 1.   Theorem 2 will now be applied to prove Theorem 1.

Recall that given a = [a0; ax, a2, . . . ] we have for integers n > -1, k(n) defined so

that An/Bn = Pk<n)/qkiny  From Theorem 3, we have the following recursion for

k(n):

(5) '*(«) + ! if afc(«)+2> 2)

*00 + 2if«*(n)+2 = l(

Define 4>„(n, a) for integers v > 0, n > ~ 1 to be the number of integers / satisfying

0 < / < k(n) - v such that a,+ x = a,+ 2 = ■ ■ • = a,+v = 1.  That is, $v(n, a) is the

number of strings of v consecutive l's in the first k(n) partial quotients (aQ is excluded).

Also, $„(«, a) = ^>v(k(n), a, (\/5 - l)/2).  The relation between the NICF and the

frequency of digits in the RCF is given by

Lemma 5.   k(n) = n + Z~=1 (-l)"-1*^«, a).
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Proof. Denoting the right-hand side by h(n), it suffices to show that h(n) satis-

fies the same recursion (5) that k(ri) does. First, it is clear that $„(-1, a) = 0 for all

v> I and so h(-1) = -1 as desired.  Set

\°     [íak(n) + 2 >2>

£" =       1       f\  l     n ak(n) + 2 - *>

so that k(n + 1) = k(n) + 1 + e„.  Then, from (5) with /z(ri) we see that we need to

prove that for all n > -1

n + l + Z (-l)v~l%(n + l,«) = « + ¿ (- l)v~x%(n, a) + 1 + e„

i>=i y=l

or

(6) ¿  (- ir1 %(n + 1, a) = ¿ (- ir1 *„(«, a) + e„.
i>=i i>=i

There are two cases.

Case a:  fc(n) = k(n - I) + I.  That is, afe(„_1) + 2 > 2 or flk(„) + 1 > 2.  We see

then that $x(n + 1, a) = &x(n, a) + en and $>v(n + 1, a) = &v(n, a) for all v > 2,

and it is clear that (6) holds in this case.

Case b:  k(n) = k(n - 1) + 2.  That is, akr„) = ak{n-i)+2 = 1-  N°w ^

ak(n)+i ^ 2, then as before i>,(« + 1, a) = $>x(n, a) + en and <&v(n + 1, a) =

$v(n, a) for all v > 2; and we are done.   So assume ak,n^+, = 1 ■  Choose r > 0 so

that a, ^ l,ar+x = ar+2 = ■ ■■=ak(n) + x = 1 (if a, =•• - = ak(n)+x = I set r =

0). Then, we see easily that

<t>vin, a) + 1 + e„    if 1< i> < *(n) 4- 1 - r,

4»y(« + 1, a) =  ( "ÍjXh, a) + e„ if v = k(n) + 2 - r,

$>v(n, a) if v > k(n) + 2 - r.

Now we observe that k(ri) + 1 - r is even.   Since ar > 2 (or r = 0) and ar+x = 1, we

see that there is an m such that r + I = k(m).  Then ak,m^ = ak,m^+x = ■ ■ • =

ak(n) = 1 mà so we see kin) - Km) is even.  Thus, k(n) + I - r = k(n) + 2 - k(m)

is even, also.  From this and (7) we see that the first k(n) + 1 - r terms of 1 + en in

(6) cancel out, and the en in the term for the odd number k(n) + 2 - r is exactly

what is needed.  This completes the proof of Lemma 5.

Theorem 1 now follows, since for almost all a

lim -f-  = Urn ~^[k(n) + £ (-l)"*^«, a)
„^„ K{n)      n-+°°k(n)\ v=i , ,-

log
1 / V5 - l\ \     2

lim-— Z (-DV,,   ¿CO'"'
kin)v% \ 2    / l°g 2

from Lemma 5 and Theorem 2(b).
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