New primes of the form $k\cdot 2^{n}+1$
HTML articles powered by AMS MathViewer
- by Robert Baillie PDF
- Math. Comp. 33 (1979), 1333-1336 Request permission
Erratum: Math. Comp. 38 (1982), 335.
Abstract:
All primes of the form $k \cdot {2^n} + 1$ for k odd, $1 \leqslant k < 150$, $1 \leqslant n \leqslant 1500$, have now been computed. Those not previously published are given here. Numbers with $151 \leqslant k \leqslant 999$ and $n \leqslant 600$ were also tested. Three new factors of Fermat numbers and a large pair of twin primes were found.References
- John Brillhart, D. H. Lehmer, and J. L. Selfridge, New primality criteria and factorizations of $2^{m}\pm 1$, Math. Comp. 29 (1975), 620–647. MR 384673, DOI 10.1090/S0025-5718-1975-0384673-1
- R. E. Crandall and M. A. Penk, A search for large twin prime pairs, Math. Comp. 33 (1979), no. 145, 383–388. MR 514834, DOI 10.1090/S0025-5718-1979-0514834-3
- Richard K. Guy, Unsolved combinatorial problems, Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969) Academic Press, London, 1971, pp. 121–127. MR 0277393
- John C. Hallyburton Jr. and John Brillhart, Two new factors of Fermat numbers, Math. Comp. 29 (1975), 109–112. MR 369225, DOI 10.1090/S0025-5718-1975-0369225-1
- G. Matthew and H. C. Williams, Some new primes of the form $k\cdot 2^{n}+1$, Math. Comp. 31 (1977), no. 139, 797–798. MR 439719, DOI 10.1090/S0025-5718-1977-0439719-0 F. PROTH, "Théorèmes sur les nombres premiers," C. R. Acad. Sci. Paris, v. 87, 1878, p. 926.
- Raphael M. Robinson, The converse of Fermat’s theorem, Amer. Math. Monthly 64 (1957), 703–710. MR 98057, DOI 10.2307/2309747
- Raphael M. Robinson, A report on primes of the form $k\cdot 2^{n}+1$ and on factors of Fermat numbers, Proc. Amer. Math. Soc. 9 (1958), 673–681. MR 96614, DOI 10.1090/S0002-9939-1958-0096614-7
- D. E. Shippee, Four new factors of Fermat numbers, Math. Comp. 32 (1978), no. 143, 941. MR 472664, DOI 10.1090/S0025-5718-1978-0472664-4
- Harold M. Stark, An introduction to number theory, Markham Publishing Co., Chicago, Ill., 1970. MR 0253973
- H. C. Williams, Primality testing on a computer, Ars Combin. 5 (1978), 127–185. MR 504864
Additional Information
- © Copyright 1979 American Mathematical Society
- Journal: Math. Comp. 33 (1979), 1333-1336
- MSC: Primary 10A25
- DOI: https://doi.org/10.1090/S0025-5718-1979-0537979-0
- MathSciNet review: 537979