New primes of the form

Author:
Robert Baillie

Journal:
Math. Comp. **33** (1979), 1333-1336

MSC:
Primary 10A25

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537979-0

Erratum:
Math. Comp. **38** (1982), 335.

MathSciNet review:
537979

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: All primes of the form for *k* odd, , , have now been computed. Those not previously published are given here. Numbers with and were also tested. Three new factors of Fermat numbers and a large pair of twin primes were found.

**[1]**John Brillhart, D. H. Lehmer, and J. L. Selfridge,*New primality criteria and factorizations of 2^{𝑚}±1*, Math. Comp.**29**(1975), 620–647. MR**384673**, https://doi.org/10.1090/S0025-5718-1975-0384673-1**[2]**R. E. Crandall and M. A. Penk,*A search for large twin prime pairs*, Math. Comp.**33**(1979), no. 145, 383–388. MR**514834**, https://doi.org/10.1090/S0025-5718-1979-0514834-3**[3]**Richard K. Guy,*Unsolved combinatorial problems*, Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), Academic Press, London, 1971, pp. 121–127. MR**0277393****[4]**John C. Hallyburton Jr. and John Brillhart,*Two new factors of Fermat numbers*, Math. Comp.**29**(1975), 109–112. MR**369225**, https://doi.org/10.1090/S0025-5718-1975-0369225-1**[5]**G. Matthew and H. C. Williams,*Some new primes of the form 𝑘⋅2ⁿ+1*, Math. Comp.**31**(1977), no. 139, 797–798. MR**439719**, https://doi.org/10.1090/S0025-5718-1977-0439719-0**[6]**F. PROTH, "Théorèmes sur les nombres premiers,"*C. R. Acad. Sci. Paris*, v. 87, 1878, p. 926.**[7]**Raphael M. Robinson,*The converse of Fermat’s theorem*, Amer. Math. Monthly**64**(1957), 703–710. MR**98057**, https://doi.org/10.2307/2309747**[8]**Raphael M. Robinson,*A report on primes of the form 𝑘⋅2ⁿ+1 and on factors of Fermat numbers*, Proc. Amer. Math. Soc.**9**(1958), 673–681. MR**96614**, https://doi.org/10.1090/S0002-9939-1958-0096614-7**[9]**D. E. Shippee,*Four new factors of Fermat numbers*, Math. Comp.**32**(1978), no. 143, 941. MR**472664**, https://doi.org/10.1090/S0025-5718-1978-0472664-4**[10]**Harold M. Stark,*An introduction to number theory*, Markham Publishing Co., Chicago, Ill., 1970. MR**0253973****[11]**H. C. Williams,*Primality testing on a computer*, Ars Combin.**5**(1978), 127–185. MR**504864**

Retrieve articles in *Mathematics of Computation*
with MSC:
10A25

Retrieve articles in all journals with MSC: 10A25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537979-0

Keywords:
Fermat numbers,
factoring,
twin primes

Article copyright:
© Copyright 1979
American Mathematical Society